Russian Journal of Electrochemistry

, Volume 41, Issue 8, pp 838–848 | Cite as

Porous Electrodes with Immobilized Enzymes: The Fractal-Percolation Properties of Supports Manufactured from Particles of Finely Divided Colloidal Graphite



The development of a porous active layer with an immobilized enzyme of a sufficiently large thickness is one of the problems that unavoidably emerge when constructing biofuel cells with high characteristics. Mounting up the thickness can be obstructed not only by the ohmic and diffusion limitations, which have been studied well enough. One more possibility of limitations (supports manufactured from finely divided colloidal graphite, FDCG), namely a “ fractal-percolation effect,” which has recently been discovered experimentally, is discussed in the paper. The essence of the effect consists of that the particles that are constituting a porous support may gather in random fractal clusters, which are connected with one another (the percolation part of the problem) with a probability that is other than unity. As a result, the electrons that are required for performing bioelectrocatalysis are capable of penetrating into a porous support only to a limited depth. Computer simulation of the fractal and percolation processes is performed in this work. As a result, quantitative relationship of the bulk concentration of FDCG in solution with the size of random fractal clusters, with the probability of their contact with one another, and with the degree of providedness of the material of the support by electrons is established. It may happen that all this information can become useful for the development of porous electrodes with an immobilized enzyme of high activity.

Key words

computer simulation biofuel cell porous electrode support finely divided colloidal graphite immobilized enzyme fractals random fractal cluster percolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katz, E., Willner, I., and Kotlyar, A.B., J. Electroanal. Chem., 1999, vol. 479, p. 64.CrossRefGoogle Scholar
  2. 2.
    Chen, T., Barton, S.C., Binyamin, G., Gao, Z., Zhang, Y., Kim, H.-H., and Heller, A., J. Am. Chem. Soc., 2001, vol. 123, p. 8630.CrossRefPubMedGoogle Scholar
  3. 3.
    Morozov, S.V., Karyakina, E.E., Zadvornyi, O.A., Zorin, N.A., Varfolomeev, S.D., and Karyakin, A.A., Elektrokhimiya, 2002, vol. 38, p. 113.Google Scholar
  4. 4.
    Tarasevich, M.R., Bogdanovskaya, V.A., Zagudaeva, R.M., and Kapustin, A.V., Elektrokhimiya, 2002, vol. 38, p. 378.Google Scholar
  5. 5.
    Kapustin, A.V., Bogdanovskaya, V.A., and Tarasevich, M.R., Elektrokhimiya, 2003, vol. 39, p. 893.Google Scholar
  6. 6.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 667.Google Scholar
  7. 7.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2002, vol. 38, p. 1130.Google Scholar
  8. 8.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 677.Google Scholar
  9. 9.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 811.Google Scholar
  10. 10.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 1476.Google Scholar
  11. 11.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2004, vol. 40, p. 34.Google Scholar
  12. 12.
    Porous Carbon Solids N-4, London: Academic, 1968.Google Scholar
  13. 13.
    Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.Google Scholar
  14. 14.
    Uglerodnye adsorbenty i ikh primenenie v promyshlennosti (Carbonaceous Adsorbents: Properties and Industrial Application) Plachenov, T.G., Ed., Moscow: Nauka, 1983.Google Scholar
  15. 15.
    Stails, E.B., Nositeli i nanesennye katalizatory (Carriers and Deposited Catalysts), Moscow: Khimiya, 1991.Google Scholar
  16. 16.
    Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Nauka, 1995.Google Scholar
  17. 17.
    Kolloidnyi grafit (Colloidal Graphite), Andreev, P.N., Ed., Moscow: Institut Prikladnoi Mineralogii, 1932.Google Scholar
  18. 18.
    Szymanowitz, R., Colloid Chemistry, New York: Reinhold, 1946, vol. 6, p. 436.Google Scholar
  19. 19.
    Fialkov, A.S., Uglegrafitovye materialy (Carbonaceous Materials), Moscow: Energiya, 1979.Google Scholar
  20. 20.
    Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh: Toplivnye elementy (The Macrokinetics of Processes in Porous Materials: Fuel Cells), Moscow: Nauka, 1971.Google Scholar
  21. 21.
    Chirkov, Yu.G., Doctoral (Chemistry) Dissertation, Moscow: IELAN SSSR, 1975.Google Scholar
  22. 22.
    Chizmadzhev, Yu.A. and Chirkov, Yu.G., in Kinetika slozhnykh elektrokhimicheskikh reaktsii (The Kinetics of Complex Electrochemical Reactions), Kazarinov, V.E., Ed., Moscow: Nauka, 1981, p. 240.Google Scholar
  23. 23.
    Chizmadzhev, Yu.A. and Chirkov, Yu.G., Comprehensive Treatise of Electrochemistry, Bockris J.O’M., et al., Eds., New York: Plenum, 1983, vol. 6, p. 317.Google Scholar
  24. 24.
    Kapustin, A.V., Tarasevich, M.R., Chirkov, Yu.G., and Bogdanovskaya, V.A., Elektrokhimiya, 2004, vol. 40, p. 1049.Google Scholar
  25. 25.
    Berezin, I.V., Bogdanovskaya, V.A., Varfolomeev, S.D., Tarasevich, M.R., and Yaropolov, A.I., Dokl. Akad. Nauk SSSR, 1978, vol. 240, p. 615.Google Scholar
  26. 26.
    Bogdanovskaya, V.A., Gavrilova, E.F., and Tarasevich, M.R., Elektrokhimiya, 1986, vol. 22, p. 105.Google Scholar
  27. 27.
    Tarasevich, M.R., Bogdanovskaya, V.A., and Kuznetsova, L.N., Elektrokhimiya, 2001, vol. 37, p. 969.Google Scholar
  28. 28.
    Broadbent, S.R. and Hammersley, J.M., Proc. Camb. Phil. Soc., 1957, vol. 53, p. 629.Google Scholar
  29. 29.
    Phase Transitions and Critical Phenomena, Domb, C. and Green, M.S.L., Eds., New York: Academic, 1972, p. 208.Google Scholar
  30. 30.
    Shklovskii, B.I. and Efros, A.L., Elektricheskie svoistva legirovannykh poluprovodnikov (Electrical Properties of Doped Semiconductors), Moscow: Nauka, 1979.Google Scholar
  31. 31.
    Percolation Structures and Processes, Deutscher, G., Zallen, R., and Adler, J., Eds., Bristol: Hilger, 1983.Google Scholar
  32. 32.
    Mason, G., Characterisation of Porous Solids, Amsterdam: Elsevier, 1988, vol. 39, p. 323.Google Scholar
  33. 33.
    Isichenko, M.B., Rev. Mod. Phys., 1992, vol. 64, p. 961.CrossRefGoogle Scholar
  34. 34.
    Stauffer, D. and Aharony, A., Introduction to Percolation Theory, London: Taylor & Francis, 1994.Google Scholar
  35. 35.
    Chirkov, Yu.G., Elektrokhimiya, 1999, vol. 35, p. 1449.Google Scholar
  36. 36.
    Voyutskii, S.S., Kurs Kolloidnoi Khimii (A Textbook of Colloid Chemistry), Moscow: Khimiya, 1975.Google Scholar
  37. 37.
    Adamson, A.W., Physical Chemistry of Surfaces, New York: Wiley, 1977.Google Scholar
  38. 38.
    Sheludko, A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Mir, 1984.Google Scholar
  39. 39.
    Frolov, Yu.G., Kurs kolloidnoi khimii (A Textbook of Colloid Chemistry), Moscow: Khimiya, 1989.Google Scholar
  40. 40.
    Fridrikhsberg, D.A., Kurs kolloidnoi khimii (A Textbook of Colloid Chemistry), St. Petersburg: Khimiya, 1995.Google Scholar
  41. 41.
    Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Vysshaya Shkola, 1992.Google Scholar
  42. 42.
    Zimon, A.D. and Leshchenko, N.F., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Agar, 2001.Google Scholar
  43. 43.
    Einshtein, A. and Smolukhovskii, M., Brounovskoe dvizhenie (The Brownian Motion), Moscow: OGIZ RSFSR, 1936.Google Scholar
  44. 44.
    Polak, A.F., Tverdenie monomineral’nykh vyazhushchikh veshchestv (The Solidification of Monomineral Binding Substances), Moscow: Stroiizdat, 1966.Google Scholar
  45. 45.
    Efremov, I.F., Periodicheskie kolloidnye struktury (The Periodical Colloidal Structures), Leningrad: Khimiya, 1971.Google Scholar
  46. 46.
    Ur’ev, N.B., Vysokokontsentrirovannye dispersnye sistemy (The High-Concentration Finely Divided Systems), Moscow: Khimiya, 1980.Google Scholar
  47. 47.
    Deryagin, B.V. and Landau, L.D., Zh. Eksp. Teor. Fiz., 1945, vol. 15, p. 663.Google Scholar
  48. 48.
    Verwey, I.W. and Overbeck, J.C., Theory of the Stability of Lyophobic Colloids, Amsterdam: Academic, 1948.Google Scholar
  49. 49.
    Deryagin, B.V., Kolloidn. Zh., 1954, vol. 16, p. 425.Google Scholar
  50. 50.
    Deryagin, B.V., Trudy III Vsesoyuz. konf. po kolloidnoi khimii (Proc. III All-Union Conf. on Colloid Chemistry), Moscow: Akad. Nauk SSSR, 1956, p. 225.Google Scholar
  51. 51.
    Chernavskaya, N.M. and Chernavskii, D.S., Tunnel’nyi transport elektronov v fotosinteze (The Tunneling Electron Transport in Photosynthesis), Moscow: Mosk. Gos. Univ., 1977.Google Scholar
  52. 52.
    Zamaraev, K.I., Khairutdinov, R.F., and Zhdanov, V.P., Tunnelirovanie elektronov v khimii: khimicheskie reaktsii na bol’shikh rasstoyaniyakh (The Tunneling Electron Transport in Chemistry: Chemical Reactions at Great Distances), Novosibirsk: Nauka, 1985.Google Scholar
  53. 53.
    Minkin, V.I., Kvantovaya khimiya organicheskikh soedinenii: Mekhanizmy reaktsii (Quantum Chemistry of Organic Compounds: Reaction Mechnisms), Moscow: Khimiya, 1986.Google Scholar
  54. 54.
    Gol’danskii, V.I., Trakhtenberg, L.I., and Flerov, V.N., Tunnel’nye yavleniya v khimicheskoi fizike (The Tunneling Phenomena in Chemical Physics), Moscow: Nauka, 1986.Google Scholar
  55. 55.
    Chernavskii, D.S. and Chernavskaya, N.M., Belok—mashina: Biologicheskie makromolekulyarnye konstruktsii (Protein as a Machine: Biological Macromolecular Structures), Moscow: Yanus-K, 1999.Google Scholar
  56. 56.
    Mandelbrot, B.B., Fractals: Form, Chance and Dimension, San Francisco: Freeman, 1977.Google Scholar
  57. 57.
    Mandelbrot, B.B., The Fractal Geometry of Nature, San Francisco: Freeman, 1982.Google Scholar
  58. 58.
    Guyon, E., Metiscu, C.D., Hulin, J.P., and Roux, S., Fractals in Physics, Aharony, A. and Feder, J., Eds., Amsterdam: North-Holland, 1989, vol. 38, p. 172.Google Scholar
  59. 59.
    Feder, J., Fractals, New York: Plenum, 1988.Google Scholar
  60. 60.
    Peitgen, H.-O. and Richter, P.H., The Beauty of Fractals: Images of Complex Dynamical Systems, Berlin: Springer, 1986.Google Scholar
  61. 61.
    Morozov, A.D., Vvedenie v teoriyu fraktalov (Theory of Fractals: An Introduction), Novgorod: Nizhegorod. Univ., 1999.Google Scholar
  62. 62.
    Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Nanosized Metal Particles in Polymers), Moscow: Khimiya, 2000.Google Scholar
  63. 63.
    Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2002, vol. 38, p. 1437.Google Scholar
  64. 64.
    The Fractal Approach to Heterogeneous Chemistry, Avnir, D., Ed., Chichester: Wiley, 1989.Google Scholar
  65. 65.
    Fractals and Chaos, Crilly, A.J., et al., Eds., New York: Springer, 1991.Google Scholar
  66. 66.
    Birdi, K.S., Fractals in Chemistry, Geochemistry and Biophysics, New York: Plenum, 1993.Google Scholar
  67. 67.
    Fractals in Soil Sciences, Baveye, P. et al., Eds., New York: CR, 1998.Google Scholar
  68. 68.
    Vold, M.J., J. Colloid Sci., 1963, vol. 18, p. 684.Google Scholar
  69. 69.
    Sutherland, D.N., J. Colloid Interface Sci., 1966, vol. 22, p. 300.CrossRefGoogle Scholar
  70. 70.
    Sutherland, D.N., J. Colloid Interface Sci., 1967, vol. 25, p. 373; Nature (London), 1974, vol. 226, p. 1241.CrossRefGoogle Scholar
  71. 71.
    Sutherland, D.N. and Goodarz-Nia, I., Chem. Eng. Sci., 1971, vol. 26, p. 2071.CrossRefGoogle Scholar
  72. 72.
    Witten, T.A. and Sander, L.M., Phys. Rev. Lett., 1981, vol. 47, p. 1400.CrossRefGoogle Scholar
  73. 73.
    Proc. Int. Conf. on Kinetics of Aggregation and Gelation, Family, F., Landau, D.P., and Athens, G.A., Eds., Amsterdam: North-Holland, 1984.Google Scholar
  74. 74.
    Witten, T.A. and Cates, M.E., Science, 1986, vol. 232, p. 1607.Google Scholar
  75. 75.
    On Growth and Form: Fractal and Nonfractal Patterns in Physics, Stanley, H.E. and Ostrowsky, V., Eds., Dordrecht: Martinus Nijhoff, 1986.Google Scholar
  76. 76.
    Schuster, H., Deterministic Chaos: An Introduction, Weinheim: Physik, 1984.Google Scholar
  77. 77.
    Smirnov, B.M., Fizika fraktal’nykh klasterov (The Physics of Fractal Clusters), Moscow: Nauka, 1991.Google Scholar
  78. 78.
    D’yakonov, V.P., Spravochnik po MathCad Plus 7.0 Pro (A Reference Book on MathCad Plus 7.0 Pro), Moscow: SK, 1998.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  1. 1.Frumkin Institute of ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Engineering PhysicsMoscowRussia

Personalised recommendations