Russian Journal of Electrochemistry

, Volume 41, Issue 7, pp 731–735 | Cite as

Copper Dissolution Rate as a Function of the Corroding-Surface Tilt



Measurements of the copper corrosion rate in 0.5 M H2SO4 as a function of the tilt angle of the corroding electrode surface in the gravitational field show that the downward flux of natural convection (NC), which arises during corrosion, effects the process similarly to NC that arises when electrochemical reactions proceed in a diffusion kinetics mode. The corrosion rate of a horizontal face-down electrode is 2.3 times that when facing up. Without NC, when a horizontal face-up copper electrode is in a recess, its corrosion rate is defined by the oxygen diffusion current and is 12–28 times as small as that with NC next to its surface.

Key words

natural convection corrosion copper sulfuric acid microgravimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Molodov, A.I., Markos’yan, G.N., and Yanov, L.A., Abstracts of Papers, II konf. stran-chlenov SEV “Zashchita metallov ot korrozii” (II Comecon conf. on Corrosion Protection of Metals), Prague, 1975, p. 21.Google Scholar
  2. 2.
    Andersen, T.N., Glandehari, M.H., and Eyring, H., J. Electrochem. Soc., 1975, vol. 122, p. 1580.Google Scholar
  3. 3.
    Kish, L., Molodov, A.I., Varshani, L.M., Markos’yan, G.N., Farkash, I., Losev, V.V., Siraki, L., and Safronova, I.A., Zashch. Met., 1980, vol. 16, p. 99.Google Scholar
  4. 4.
    Molodov, A.I., Markos’yan, G.N., and Losev, V.V., Elektrokhimiya, 1981, vol. 17, p. 1131.Google Scholar
  5. 5.
    Schumacher, R., Muller, A., and Stockel, W., J. Electroanal. Chem., 1987, vol. 219, p. 311.CrossRefGoogle Scholar
  6. 6.
    Sorokin, V.I. and Shestopalova, A.O., Zashch. Met., 1995, vol. 31, p. 331.Google Scholar
  7. 7.
    Ma, H., Chen, S., Yin, B., Zhao, S., and Liu, X., Corros. Sci., 2003, vol. 45, p. 867.CrossRefGoogle Scholar
  8. 8.
    Kaesche, H., Die Korrosion der Metalle, Berlin: Springer, 1979.Google Scholar
  9. 9.
    Grigin, A.P. and Davydov, A.D., Elektrokhimiya, 1998, vol. 34, p. 1237.Google Scholar
  10. 10.
    Reuter, W. and Wragg, A.A., Proc. 4th Int. Workshop on Electrochemical Flow Measurements, Lahnstein (Germany), March 17–20, 1966), Frankfort on the Main: DEHEMA, 1966, poster 2.3.Google Scholar
  11. 11.
    Bograchev, D.A. and Davydov, A.D., Electrochim. Acta, 2002, vol. 47, p. 3277.CrossRefGoogle Scholar
  12. 12.
    Reznikova, L.A., Morgunova, E.E., Lilin, S.A., and Davydov, A.D., Elektrokhimiya, 2003, vol. 39, p. 807.Google Scholar
  13. 13.
    Mansour, I.A.S. and Sherify, T.H.E., Surf. Technol., 1983, vol. 19, p. 355.CrossRefGoogle Scholar
  14. 14.
    Ahmed, A.M. and Sedahmed, G.H., Metal. Finish., 1989, vol. 87, p. 69.Google Scholar
  15. 15.
    Juzeliunas, E., Kalinauskas, P., and Miecinskas, P., J. Electrochem. Soc., 1996, vol. 143, p. 1525.Google Scholar
  16. 16.
    Blestyashchie elektroliticheskie pokrytiya (Bright Electrolytic Coatings), Matulis, J., Ed., Vilnius, 1969.Google Scholar
  17. 17.
    Sedahmed, G.H., El-Abd, M.Z., Mansour, I.A.S., and Ahmed, A.M., J. Appl. Electrochem., 1979, vol. 9, p. 1.CrossRefGoogle Scholar
  18. 18.
    Wragg, A.A., Electrochim. Acta, 1968, vol. 13, p. 2159.CrossRefGoogle Scholar
  19. 19.
    Wragg, A.A. and Loomba, R.P., Int. J. Heat Mass Transfer, 1970, vol. 13, p. 439.CrossRefGoogle Scholar
  20. 20.
    Leinartas, K., Miecinskas, P., Sudavicius, A., Jelinskiene, D., Juskenas, R., Lisauskas, V., Vengalis, B., and Juzeliunas, E., J. Appl. Electrochem., 2001, vol. 31, p. 1079.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  1. 1.Institute of ChemistryVilniusLithuania

Personalised recommendations