Advertisement

Russian Journal of Electrochemistry

, Volume 41, Issue 4, pp 368–380 | Cite as

Symmetry properties of adiabatic free energy surfaces and a diagram of kinetic modes in the case of electrochemical tunneling microscopy of redox systems

  • I. G. Medvedev
Article

Abstract

The symmetry properties of adiabatic free energy surfaces, which describe redox and dissociative electron transfer reactions in systems of the type in situ STM, are investigated. A notion of an effective overvoltage, which is a generalization of a traditional overvoltage to the case where the bias voltage is other than zero, is introduced. Diagrams of kinetic modes, which describe processes that can occur in systems of the type in situ STM under consideration, are constructed in the space of model parameters. It is shown that, in some cases, with the bias voltage other than zero, there may emerge DKR of a sufficiently complicated structure with several critical regions.

Key words

electrochemical tunneling microscopy adiabatic free energy surface electron transfer reaction symmetry property diagram of kinetic modes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Kuznetsov, A.M. and Ulstrup, J., Probe Microscopy, 2001, vol. 2, p. 187.Google Scholar
  2. 2.
    Hansen, A.G., Wackerbarth, H., Nielsen, J.U., Zhang, J., Kuznetsov, A.M., and Ul’strup, J., Elektrokhimiya, 2003, vol. 39, p. 117.Google Scholar
  3. 3.
    Kuznetsov, A.M., Sommer-Larsen, P., and Ulstrup, J., Surf. Sci., 1992, vol. 275, p. 52.Google Scholar
  4. 4.
    Schmickler, W. and Widrig, C., J. Electroanal. Chem., 1992, vol. 336, p. 213.Google Scholar
  5. 5.
    Schmickler, W., Surf. Sci., 1993, vol. 295, p. 43.Google Scholar
  6. 6.
    Friis, E.P., Kharkats, Yu.I., Kuznetsov, A.M., and Ulstrup, J., J. Phys. Chem. A, 1998, vol. 102, p. 7494.Google Scholar
  7. 7.
    Kuznetsov, A.M. and Ulstrup, J., J. Phys. Chem. A, 2000, vol. 104, p. 11531.Google Scholar
  8. 8.
    Zhang, J., Kuznetsov, A.M., and Ulstrup, J., J. Electroanal. Chem., 2003, vol. 541, p. 133.Google Scholar
  9. 9.
    Kuznetsov, A.M. and Ulstrup, J., J. Electroanal. Chem., 2004, vol. 564, p. 209.Google Scholar
  10. 10.
    Medvedev, I.G., Elektrokhimiya, 2005, vol. 41, no.3.Google Scholar
  11. 11.
    Kuznetsov, A.M. and Medvedev, I.G., Elektrokhimiya, 2001, vol. 37, p. 396.Google Scholar
  12. 12.
    Kuznetsov, A.M. and Medvedev, I.G., J. Electroanal. Chem., 2001, vol. 502, p. 15.Google Scholar
  13. 13.
    Medvedev, I.G., Elektrokhimiya, 2003, vol. 39, p. 49.Google Scholar
  14. 14.
    Kuznetsov, A.M., Medvedev, I.G., and Sokolov, V.V., Elektrokhimiya, 2003, vol. 39, p. 932.Google Scholar
  15. 15.
    Kuznetsov, A.M., Medvedev, I.G., and Sokolov, V.V., J. Electroanal. Chem., 2003, vol. 552, p. 231.Google Scholar
  16. 16.
    Kuznetsov, A.M., Medvedev, I.G., and Sokolov, V.V., J. Chem. Phys., 2004, vol. 120, p. 7616.PubMedGoogle Scholar
  17. 17.
    Medvedev, I.G., Elektrokhimiya, 2004, vol. 40, p. 539.Google Scholar
  18. 18.
    Kuznetsov, A.M. and Medvedev, I.G., Elektrokhimiya, 2005, vol. 41, no.3.Google Scholar
  19. 19.
    Anderson, P.W., Phys. Rev., 1961, vol. 124, p. 41.Google Scholar
  20. 20.
    Muscat, J.P. and Newns, D.M., Prog. Surf. Sci., 1978, vol. 9, p. 1.Google Scholar
  21. 21.
    Kuznetsov, A.M., J. Electroanal. Chem., 1983, vol. 159, p. 241.Google Scholar
  22. 22.
    Schmickler, W., J. Electroanal. Chem., 1986, vol. 204, p. 31.Google Scholar
  23. 23.
    Kuznetsov, A.M., Medvedev, I.G., and Ulstrup, J., Electrochem. Commun., 2000, vol. 2, p. 135.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • I. G. Medvedev
    • 1
  1. 1.Frumkin Institute of ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations