Russian Journal of Electrochemistry

, Volume 41, Issue 1, pp 17–31 | Cite as

Adsorption isotherm for a solid electrode: The link between the differential surface tension and capacitance curves



Investigation of thermodynamically equilibrium single-component adsorption from a liquid solution on a solid electrode with allowance made for elastic deformation of its surface ϑ is continued. A full electrocapillarity equation is derived from thermodynamics equations for an interphase layer in the absence of irreversible processes. Thermodynamic aspects of the Shuttleworth equation are discussed and the equation is compared with two-dimensional Murnaghan formulas for elastic isotropic media. An adsorption isotherm equation and compatibility equations that had been derived previously are examined in a special case where the derivative Γ of a surface concentration with respect to ϑ \(\frac{{\partial \Gamma }}{{\partial \vartheta }} \equiv \gamma \vartheta\) depends solely on Γ (γϑϑ(Γ)) and a rigorous solution of these is obtained for a deformed electrode (ϑ ≠ 0). The effect of ϑ and dimensionless electrode potential φ on the extreme (at an infinitely high adsorbate concentration) value of Γ is studied. The model of two parallel capacitors is considered in detail for a general case. Owing to the use of capacitance curves for an elastically stretched electrode, a formula that expresses the differential surface tension of a nondeformed electrode through such curves is derived for the first time ever.

Key words

adsorption solid electrode adsorption isotherm surface deformation differential surface tension capacitance curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Podgaetskii, E.M., Elektrokhimiya, 1999, vol. 35, p. 528.Google Scholar
  2. 2.
    Podgaetskii, E.M., Elektrokhimiya, 2001, vol. 37, p. 33.Google Scholar
  3. 3.
    Podgaetskii, E.M., Elektrokhimiya, 2001, vol. 37, p. 1242.Google Scholar
  4. 4.
    Gutman, E.M., Mekhanokhimiya metallov i zashchita ot korrozii (Mechanical Chemistry and Corrosion Protection Metals), Moscow: Metallurgiya, 1974.Google Scholar
  5. 5.
    Sedov, L.I., Mekhanika sploshnoi sredy (Mechanics of Continuous Media), Moscow: Nauka, 1973, vol. 1.Google Scholar
  6. 6.
    Gorshkov, A.G., Rabinskii, L.N., and Tarlakovskii, D.V., Osnovy tenzornogo analiza i mekhanika sploshnoi sredy (Fundamentals of Tenzor Calculus and Mechanics of Continuous Media), Moscow: Nauka, 2000.Google Scholar
  7. 7.
    Shuttleworth, R., Proc. Phys. Soc., 1950, Section A63, no. 365, p. 444.Google Scholar
  8. 8.
    Grafov, B.M., J. Electroanal. Chem., 1999, vol. 471, p. 105.Google Scholar
  9. 9.
    Godunov, S.K. and Romenskii, E.I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya (Elements of Mechanics of Continuous Media and Conservation Laws), Novosibirsk: Nauchnaya Kniga, 1998.Google Scholar
  10. 10.
    Sedov, L.I., Mekhanika sploshnoi sredy (Mechanics of Continuous Media), Moscow: Nauka, 1976, vol. 2.Google Scholar
  11. 11.
    Cherepanov, G.P., Mekhanika khrupkogo razrusheniya (Mechanics of Brittle Fracture), Moscow: Nauka, 1976, p. 21.Google Scholar
  12. 12.
    Linford, R.G., Chem. Rev. (Washington, D.C.), 1978, vol. 78, no. 2, p. 81.Google Scholar
  13. 13.
    Grafov, B.M., Paasch, G., Plieth, W., and Bund, A., Electrochim. Acta, 2003, vol. 48, p. 581.Google Scholar
  14. 14.
    Gokhshtein, A.Ya., Poverkhnostnoe natyazhenie tverdykh tel i adsorbtsiya (Surface Tension in Solids and Adsorption), Moscow: Nauka, 1976.Google Scholar
  15. 15.
    Frumkin, A.N., Tr. Khim. Inst. im. L.Ya. Karpova, 1925, vol. 4, p. 56; 1926, vol. 5, p. 3Google Scholar
  16. 16.
    Fedorov, V.V., Teoriya optimal’nogo eksperimenta (Theory of Optimum Experiment), Moscow: Nauka, 1971. Fedorov, V.V., Making Plans for a Surface of Response Nonlinearly Depending on the Parameters to Be Estimated, Preprint of Moscow State University, 1971, no. 21.Google Scholar
  17. 17.
    Damaskin, B.B., Safonov, V.A., and Karpov, S.I., Elektrokhimiya, 1990, vol. 26, p. 1654.Google Scholar
  18. 18.
    Frumkin, A.N., Potentsialy nulevogo zaryada (The Potentials of Zero Charge), Moscow: Nauka, 1979.Google Scholar
  19. 19.
    Rebinder, P.A. and Venstrem, E.K., Zh. Fiz. Khim., 1945, vol. 19, p. 1.Google Scholar
  20. 20.
    Tyurin, Yu.M., Sazont’eva, T.V., and Naumov, V.I., Elektrokhimiya, 1994, vol. 30, p. 1320.Google Scholar
  21. 21.
    Courant, R., Partial Differential Equations, New York, 1962.Google Scholar
  22. 22.
    Petrovskii, I.G., Lektsii po teorii obyknovennykh differentsial’nykh uravnenii (Lectures on Ordinary Differential Equations), Moscow: Nauka, 1964.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  1. 1.Institute of Applied MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations