Russian Journal of Electrochemistry

, Volume 41, Issue 2, pp 195–199 | Cite as

Optimum synthesis of heterogeneous multisectional resistive—capacitive circuits simulating the generalized Warburg impedance

  • M. R. Vyaselev
  • D. V. Glebov


Procedures that are usually used for synthesizing multisectional RC circuits capable of real-time simulation of the generalized Warburg impedance are briefly reviewed. The review shows different procedures to synthesize circuits with substantially different numbers of required sections at the same requirements with regard to the frequency interval and the simulation accuracy. The results of the development of optimum numerical synthesis of such circuits, which leads to a substantial decrease in the number of sections at the same initial data, are presented.

Key words

generalized Warburg impedance semi-differentiation and integration numerical synthesis heterogeneous RC circuits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aramanovich, I.G., Guter, R.S., and Lyusternik, L.A., Matematicheskii analiz: Differentsirovanie i integrirovanie (Calculus: Differentiation and Integration), Moscow: Fizmatgiz, 1961.Google Scholar
  2. 2.
    Stoynov, Z.B., Grafov, B.M., Savova-Stoynova, B., and Elkin, V.V., Elektrokhimicheskii impedans (The Electrochemical Impedance), Moscow: Nauka, 1991.Google Scholar
  3. 3.
    Nigmatullin, R.Sh., Materialy 2go vsesoyuz. soveshch. po polyarografii (Proc. 2nd All-Union Meet. on Polarography), Kazan: Kazan. Univ., 1962, p. 98.Google Scholar
  4. 4.
    Nigmatullin, R.Sh. and Belavin, V.A., Tr. Kazan. Aviats. Inst., 1964, no. 82, p. 34.Google Scholar
  5. 5.
    Nigmatullin, R.Sh., Dokl. Akad. Nauk SSSR, 1963, vol. 151, p. 1383.Google Scholar
  6. 6.
    Nigmatullin, R.Sh. and Bazlov, E.F., Tr. Kazan. Aviats. Inst., 1963, no. 73, p. 57.Google Scholar
  7. 7.
    Nigmatullin, R.Sh. and Miroshnikov, A.I., Materialy 2go vsesoyuz. soveshch. po polyarografii (Proc. 2nd All-Union Meet. on Polarography), Kazan: Kazan. Univ., 1962, p. 101.Google Scholar
  8. 8.
    Nigmatullin, R.Sh. and Miroshnikov, A.I., Tr. Kazan. Aviats. Inst., 1968, no. 94, p. 148.Google Scholar
  9. 9.
    Vyaselev, M.R. and Bikmullin, I.Kh., USSR Inventor’s Certificate no. 813 239, Byull. Izobret., 1981, no. 10.Google Scholar
  10. 10.
    Vyaselev, M.R., Teoriya apparaturnykh metodov vol’tammetrii (Theory of Apparatus Methods for Voltammetry), Kazan: Kazan. Gos. Tekhn. Univ., 2000.Google Scholar
  11. 11.
    Nigmatullin, R.Sh., Bazlov, E.F., and Gordeeva, A.P., Tr. Kazan. Aviats. Inst., 1968, no. 94, p. 75.Google Scholar
  12. 12.
    Stiglitz, K., IEEE Trans. Circuit Theory, 1965, no. 3, p. 78.Google Scholar
  13. 13.
    Karamov, F.A., Superionnye provodniki: Geterostruktury i elementy funktsional’noi elektroniki na ikh osnove (Heterostructures and Electronics Elements Based on the Superionics), Moscow: Nauka, 2002.Google Scholar
  14. 14.
    Stewart, J., Theory and Synthesis of Electric Circuits, New York: Wiley, 1958.Google Scholar
  15. 15.
    Nigmatullin, R.Sh. and Chugunov, I.A., Izv. Bolg. Akad. Nauk, 1990, vol. 23, p. 270.Google Scholar
  16. 16.
    Nasyrov, I.K. and Gol’braikh, P.L., in Radioelektronnye ustroistva i sistemy (Radioelectronics), Kazan: Kazan. Gos. Tekhn. Univ., 1996, p. 17.Google Scholar
  17. 17.
    Greness, M. and Oldham, K.B., Anal. Chem., 1972, vol. 44, p. 1121.Google Scholar
  18. 18.
    Oldham, K.B. and Zoski, C.D., Anal. Chem., 1980, vol. 52, p. 2116.Google Scholar
  19. 19.
    Astaf’ev, M.G., Elektrokhimiya, 2000, vol. 36, p. 306.Google Scholar
  20. 20.
    D’yakonov, V.S., Mathlab: Uchebnyi kurs (Mathlab: A Brief Overview), St. Petersburg: Piter, 2001.Google Scholar
  21. 21.
    Forsythe, G.E., Malcolm, M.A., and Mowler, K.A., Computer Methods for Mathematical Computations, Englewood Cliffs, 1977.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  1. 1.Kazan State Technical UniversityTatarstanRussia

Personalised recommendations