Russian Journal of Developmental Biology

, Volume 36, Issue 4, pp 225–229 | Cite as

Role of Genetic Processes in Modification Variability. Prophecy of B.L. Astaurov

  • S. G. Inge-Vechtomov
Materials from the Conference Dedicated to the Centenary of B.L. Astaurov


In his pioneering work on mutation tetraptera in Drosophila melanogaster, B.L. Astaurov discovered spontaneous modifications based on variability in gene expression. This new approach to the phenomenon of modifications should be considered as the first stimulus to development of the general theory of variability. Contemporary classification of variability based predominantly on phenomenology encounters many contradictions. The same specific molecular mechanisms may be responsible, for example, for both hereditary and nonhereditary variability depending on the taxonomic status. Some mechanisms responsible for both mutations and modifications or for mutations, recombination, and ontogenetic variability have been considered from this viewpoint. It may well be more productive to consider different types of variability with respect to the main genetic processes: replication and expression of genetic material.

Key words

modifications variability gene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. and Kedersha, N., Stressful Initiations, J. Cell Sci., 2002, vol. 115, pp. 3227–3234.PubMedGoogle Scholar
  2. Astaurov, B.L., A Study of Hereditary Changes of Halters in Drosophila melanogaster Schin., Zh. Eksperim. Biol., Ser. A, 1927, vol. 3, nos.1–2, pp. 1–61.Google Scholar
  3. Blake, W., Kaern, M., Cantor, C.R., and Collins, J.J., Noise in Eukaryotic Gene Expression, Nature, 2003, vol. 422, pp. 633–637.CrossRefPubMedGoogle Scholar
  4. Chaudhuri, J., Khuong, C., and Alt, F.W., Replication Protein A Interacts with AID To Promote Deamination of Somatic Hypermutation Targets, Nature, 2004, vol. 430, pp. 992–998.CrossRefPubMedGoogle Scholar
  5. Crick, H.F.C., On Protein Synthesis, Symp. Soc. Exp. Biol., 1958, vol. 12, pp. 138–163.PubMedGoogle Scholar
  6. Crick, H.F.C., Central Dogma of Molecular Biology, Nature, 1970, vol. 222, pp. 567–573.Google Scholar
  7. Fares, M.A., Ruiz-Gonzalez, M.X., Moya, A., et al., Gro EL Buffers against Deleterious Mutations, Nature, 2002, vol. 417, p. 398.CrossRefPubMedGoogle Scholar
  8. Flajnik, M.F., Another Manifestation of GOD, Nature, 2004, vol. 430, pp. 157–158.CrossRefPubMedGoogle Scholar
  9. Gilks, N., Kedersha, N., Ayodele, M., et al., Stress Granule Assembly Is Mediated by Prion-Like Aggregation of TIA-1, Mol. Biol. Cell, 2004, vol. 15, pp. 5383–5398.CrossRefPubMedGoogle Scholar
  10. Glazer, V.M., Recombination without Homology, Soros. Obrazovat. Zh., 1998, no. 7, pp. 22–29.Google Scholar
  11. Inge-Vechtomov, S.G., Genetika s osnovami selektsii (Genetics with Foundations of Selection), Moscow: Vysshaya Shkola, 1989.Google Scholar
  12. Inge-Vechtomov, S.G., Template Principle in Biology (Past, Present, and Future?), Ekolog. Genetika, 2003, vol. 1, no.1, pp. 6–15.Google Scholar
  13. Inge-Vechtomov, S.G. and Repnevskaya, M.V., Phenotypic Expression of Primary Lesions of Genetic Material in Saccharomyces Yeast, Genome, 1989, vol. 31, pp. 497–502.PubMedGoogle Scholar
  14. Krogh, B.O. and Symington, L.S., Recombination Proteins in Yeast, Annu. Rev. Genet., 2004, vol. 38, pp. 233–271.CrossRefPubMedGoogle Scholar
  15. Leu, J.Y., Chua, P.R., and Roeder, G.S., The Meiosis-Specific Hop2 Protein of S. cerevisiae Ensures Synapsis Between Homologous Chromosomes, Cell, 1998, vol. 94, pp. 375–386.CrossRefPubMedGoogle Scholar
  16. Lobashev, M.E., Genetika (Genetics), Leningrad: Leningr. Gos. Univ., 1967.Google Scholar
  17. Novina, C.D. and Sharp, P.A., The RNAi Revolution, Nature, 2004, vol. 430, pp. 161–164.CrossRefPubMedGoogle Scholar
  18. Paulsson, J., Summing Up the Noise in Gene Networks, Nature, 2004, vol. 427, pp. 415–418.CrossRefPubMedGoogle Scholar
  19. Pontecorvo, G., Template and Stepwise Processes in Heredity, Proc. Roy. Soc. Ser. B, 1966, vol. 164, p. 167.Google Scholar
  20. Prusiner, S.B., Prions, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13 363–13 383.CrossRefGoogle Scholar
  21. Queitsch, C., Sangster, T.A., and Lindquist, S., Hsp90 as a Capacitor of Phenotypic Variation, Nature, 2002, vol. 417, pp. 618–624.CrossRefPubMedGoogle Scholar
  22. Rutherford, S.L. and Lindquist, S., Hsp90 as a Capacitor for Morphological Evolution, Nature, 1998, vol. 396, pp. 336–342.CrossRefPubMedGoogle Scholar
  23. Tchuraev, R.N., On a Noncanonical Theory of Heredity, Sovremennye kontseptsii evolyutsionnoi genetiki (Current Concepts of Evolutionary Genetics), Shumnyi, V.K. and Markel’, A.L., Eds., Novosibirsk, 2000, pp. 22–32.Google Scholar
  24. Tchuraev, R.N., Stupak, I.V., Tropinina, T.S., and Stupak, E.E., Epigen: Design and Construction of New Hereditary Units, FEBS Letters, 2000, vol. 486, pp. 200–202.CrossRefPubMedGoogle Scholar
  25. Tikhodeev, O.N. and Zhurina, T.V., Autonomous Variability: Phenomenon and Possible Mechanisms, Ekolog. Genetika, 2004, vol. 2, no.2, pp. 3–10.Google Scholar
  26. Timofeeff-Ressovsky, N.W., Studies on the Phenotype Manifestation of Hereditary Factors. 1. On the Phenotypic Manifestation of the Genovariation radius incompletes in Drosophila funebris, Genetics, 1927, vol. 12, pp. 128–198.Google Scholar
  27. Wickner, R.B., [URE3] as an Altered URE2 Protein: Evidence for a Prion Analog in Saccharomyces cerevisiae, Science, 1994, vol. 264, pp. 566–569.PubMedGoogle Scholar
  28. Wickner, R.B., Masison, D.C., and Edskes, H.K., [PSI] and [URE3] as Yeast Prions, Yeast, 1995, vol. 11, pp. 1671–1685.CrossRefPubMedGoogle Scholar
  29. Zhimulev, I.F., Obshchaya i molekulyarnaya genetika (General and Molecular Genetics), Novosibirsk: Sib. Universit., 2003.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • S. G. Inge-Vechtomov
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations