Russian Journal of Coordination Chemistry

, Volume 31, Issue 10, pp 685–694 | Cite as

Transformations of β-Hydroxo-Substituted η3-Allyl Pd Complexes in Neutral and Weakly Acidic Solutions

  • E. D. Finashina
  • N. V. Kramareva
  • E. M. Evstigneeva
  • V. R. Flid
  • A. P. Belov


The oxidation of some β-hydroxo-substituted η3-allyl Pd complexes based on the simplest 1,3-dienes is studied by the 1H and 13C NMR methods in neutral and weakly acidic methods. The composition of the reaction products is determined by the nature of the oxidizing agent and the structure of allyl fragment. The method of selective oxidation of the β-carbon atom of the allyl ligand with the allyl-metal bond remaining unchanged is suggested.


Oxidation Physical Chemistry Inorganic Chemistry Acidic Solution Allyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nystrom, J.E., Soderberg, B., Akermark, B., and Backval, J-E., J. Organomet. chem., 1987, vol. 334, p. 169.CrossRefGoogle Scholar
  2. 2.
    Andari, M.K., Andreeva, A.E., and Belov, A.P., Zh. Strukt. Khim., 1984, vol. 25, no.2, p. 167.Google Scholar
  3. 3.
    Evstigneeva, E.M., Kalabin, S.M., Finashina, E.D., and Belov, A.P., Koord. Khim., 1994, vol. 20, no.9, p. 681.Google Scholar
  4. 4.
    Belozerov, V.E., Finashina, E.D., Flid, V.R., and Belov, A.P., Kinet. Katal., 1997, vol. 38, no.3, p. 387 [Kinet. Catal. (Engl. Transl.), vol. 38, no. 3, p. 355].Google Scholar
  5. 5.
    Petukhova, T.N., Cand. Sci. (Chem.) Dissertation, Moscow: Lomonosov State Academy of Fine Chemical Technology, 1989.Google Scholar
  6. 6.
    Andari, M.K., Cand. Sci. (Chem.) Dissertation, Moscow: Lomonosov State Academy of Fine Chemical Technology, 1983.Google Scholar
  7. 7.
    Evstigneeva, E.M., Cand. Sci. (Chem.) Dissertation, Moscow: Lomonosov State Academy of Fine Chemical Technology, 1993.Google Scholar
  8. 8.
    Gomez-Bengoa, E., Noheda, P., and Echvarren, A.M., Tetrahedron Lett., 1994, vol. 35, no.38, p. 7097.CrossRefGoogle Scholar
  9. 9.
    Peterson, K.P. and Larock, R., J. Org. Chem., 1998, vol. 63, no.10, p. 3185.CrossRefGoogle Scholar
  10. 10.
    Takahashi, M., Urata, H., Suzuki, H., et al., J. Organomet. Chem., 1984, vol. 266, no.3, p. 327.CrossRefGoogle Scholar
  11. 11.
    Collins, D.J., Jackson, W.R., and Timms, R.N., Aust. J. Chem., 1980, vol. 33, p. 2761.Google Scholar
  12. 12.
    Falle, J.W., Thompsen, M.E., and Mattina, M.J., J. Am. Chem. Soc., 1971, vol. 93, no.11, p. 2642.CrossRefGoogle Scholar
  13. 13.
    Pozin, M.E., Perekis' vodoroda i perekisnye soedineniya (Hydrogen Peroxide and Peroxide Compounds), Leningrad: Goskhimizdat, 1954.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • E. D. Finashina
    • 1
  • N. V. Kramareva
    • 1
  • E. M. Evstigneeva
    • 2
  • V. R. Flid
    • 2
  • A. P. Belov
    • 2
  1. 1.Zelinskii Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Academy of Fine Chemical TechnologyRussia

Personalised recommendations