Russian Journal of Coordination Chemistry

, Volume 31, Issue 8, pp 575–579 | Cite as

Regularities of the trans-Influence of Ligand L on the Energy Characteristics of the Metastable Isomers of trans-[RuX4(NO)L]q (L = H2O, NH3, Pyrazine, Cl, OH, CN, NO 2 ; X = Cl, NH3)

  • O. O. Lubimova
  • O. V. Sizova


The geometric structures of the ground state and metastable isomers of the nitroso complexes trans-[RuCl4(NO)L]q (L = H2O, NH3, pyrazine (Pz), q = −1; Cl, OH, CN, NO 2 , q = −2) and cis[RuCl4(NO)L]q (L = Pz, q = −1) were optimized in terms of the density functional theory. The variation of the trans-ligand L influences the relative energy of the metastable isomer with a side NO coordination. The presence of π-acceptor substituents in the trans-ligand L decreases the energy.


Physical Chemistry Inorganic Chemistry Density Functional Theory Relative Energy Geometric Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coppens, Ph., Novozhilova, I., and Kovalevsky, A., Chem. Rev., 2002, vol. 102, no.4, p. 861.CrossRefPubMedGoogle Scholar
  2. 2.
    Guida, J.A., Ramos, M.A., Piro, O.E., and Aumonino, P.A., J. Mol. Struct., 2002, vol. 609, nos.1–3, p. 39.CrossRefGoogle Scholar
  3. 3.
    Delley, B., Schefer, J., and Woike, Th., J. Chem. Phys., 1997, vol. 107, no.23, p. 10067.CrossRefGoogle Scholar
  4. 4.
    Schaniel, D., Woike, T., Boskovic, C., and Gudel, H.-U., Chem. Phys. Lett., 2004, vol. 390, nos.4–6, p. 347.CrossRefGoogle Scholar
  5. 5.
    Kim, C., Novozhilova, I., Goodman, M.S., et al., Inorg. Chem., 2000, vol. 39, p. 5791.CrossRefPubMedGoogle Scholar
  6. 6.
    Fomitchev, D.V., Novozhilova, I., and Coppens, P., Tetrahedron, 2000, vol. 56, no.36, p. 6813.CrossRefGoogle Scholar
  7. 7.
    Sizova, O.V., Lyubimova, O.O., and Sizov, V.V., Zh. Obshch. Khim., 2004, vol. 74, no.3, p. 353.Google Scholar
  8. 8.
    Gaussian 98, Revision A.7, Pittsburgh: Gaussian, Inc., 1998.Google Scholar
  9. 9.
    Vosko, S.H., Wilk, L., and Nusair, M., Can. J. Phys., 1980, vol. 58, p. 1200.Google Scholar
  10. 10.
    Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, no.1, p. 299.CrossRefGoogle Scholar
  11. 11.
    Wadt, W.R. and Hay, P.J., J. Chem. Phys., 1985, vol. 82, no.1, p. 284.CrossRefGoogle Scholar
  12. 12.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no.7, p. 5648.CrossRefGoogle Scholar
  13. 13.
    Godbout, N., Salahub, D.R., Andzelm, J., and Wimmer, E., Can. J. Chem., 1992, vol. 70, no.5, p. 560.Google Scholar
  14. 14.
    Serli, B., Zangrando, E., Iengo, E., and Alessio, E., Inorg. Chim. Acta, 2003, vol. 339, nos.1–2, p. 265.Google Scholar
  15. 15.
    Tfouni, E., Krieger, M., McGarvey, B.R., and Franco, D.W., Coord. Chem. Rev., 2003, vol. 236, p. 57.CrossRefGoogle Scholar
  16. 16.
    Gorelsky, S.I. and Lever, A.B.P., Int. J. Quantum Chem., 2000, vol. 80, p. 636.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • O. O. Lubimova
    • 1
  • O. V. Sizova
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations