Russian Journal of Coordination Chemistry

, Volume 31, Issue 4, pp 286–290 | Cite as

Complexation between N-allylmorpholinium derivatives and copper(I) halides. Synthesis and crystal structure of π-complex {[C4H8ONH(C3H5)]+}2[Cu2Cl4]2−

  • E. A. Goreshnik
  • V. N. Davydov
  • M. G. Mys’kiv


Copper(I) π-complex {[C4H8ONH(C3H5)]+}2[Cu2Cl4]2− (I) was obtained by ac electrochemical synthesis from N-allylmorpholine hydrochloride and copper(II) chloride in ethanol and structurally characterized. In structure I, copper and chlorine atoms form unique noncentrosymmetric Cu2Cl 4 2− fragments. Both crystallographically independent N-allylmorpholinium cations are involved in the π-interaction and are coordinated by the copper atom through the C=C bond of the allyl group. The trigonal pyramidal environment of the Cu(1) atom is composed of three chlorine atoms and the C=C bond, while the Cu(2) atom coordinates two chlorine atoms and the C=C bond forming a planar triangle. The extremely strong N-C⋯Cl hydrogen bond (H⋯Cl 2.2 Å) prevents the Cl(1) atom from acting as a bridge and favors the formation of fragments Cu2Cl 4 2− .


Hydrogen Copper Chloride Physical Chemistry Crystal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goreshnik, E.A. and Mys’kiv, M.G., Polish J. Chem., 1999, vol. 73, no.8, p. 1245.Google Scholar
  2. 2.
    Goreshnik, E.A., Schollmeyer, D., Mys’kiv, M.G., and Pavl’uk, O.V., Z. Anorg. Allg. Chem., 2000, vol. 626, no.4, p. 1016.CrossRefGoogle Scholar
  3. 3.
    Mykhalichko, B.M., Oliinik, V.V., Mys’kiv, M.G., et al., Koord. Khim., 1994, vol. 20, no.3, p. 208.Google Scholar
  4. 4.
    Mys’kiv, M.G., Fayad, Kh., and Zavodnik, V.E., Metallorgan. Khim., 1991, vol. 4, no.2, p. 415.Google Scholar
  5. 5.
    Mys’kiv, M.G. and Oliinik, V.V., Koord. Khim., 1995, vol. 21, no.4, p. 290.Google Scholar
  6. 6.
    Goreshnik, E.A. and Mys’kiv, M.G., Koord. Khim., 2003, vol. 29, no.7, p. 541.Google Scholar
  7. 7.
    Willson, F.G. and Wheeler, T.S., Org. Synth., 1928, vol. 8, p. 38.Google Scholar
  8. 8.
    Mykhalichko, B.M. and Mys’kiv, M.G., Ukr. Patent 25450A, Byul. Izobret., 1998, no. 6.Google Scholar
  9. 9.
    Akselrud, L.G., Gryn’, Yu.M., Pecharsky, V.K., et al., Sec. Eur. Powder Diffraction Conf. Enschede, Netherlands, 1992.Google Scholar
  10. 10.
    Bergerhoff, G., Diamond “Visual Crystal Structure Information System,” Bonn: Univ. of Bonn, 1996.Google Scholar
  11. 11.
    Goreshnik, E.A., Schollmeyer, D., and Mys’kiv, M.G., Z. Anorg. Allg. Chem., 2003, vol. 629, no.11, p. 2040.Google Scholar
  12. 12.
    Goreshnik, E.A., Schollmeyer, D., and Mys’kiv, M.G., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2003, vol. 59, no.11, p. 478.Google Scholar
  13. 13.
    Goreshnik, E.A., Pavlyuk, A.V., Shollmeier, D., and Mys’kiv, M.G, Koord. Khim., 1999, vol. 25, no.9, p. 699.Google Scholar
  14. 14.
    Taylor, R. and Kennard, O., J. Am. Chem. Soc., 1982, vol. 104, no.19, p. 5063.Google Scholar
  15. 15.
    Desiraju, G.R., Act. Chem. Res., 1991, no. 24, p. 290.Google Scholar
  16. 16.
    Aakeröy, C.B., Evans, T.A., Seddon, K.R., and Pálinko, I., New J. Chem., 1999, p. 145.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • E. A. Goreshnik
    • 1
  • V. N. Davydov
    • 2
  • M. G. Mys’kiv
    • 2
  1. 1.Georg-August UniversityGöttingenGermany
  2. 2.Franko National UniversityLvivUkraine

Personalised recommendations