Advertisement

Russian Journal of Coordination Chemistry

, Volume 31, Issue 3, pp 193–202 | Cite as

Spectrophotometric study of Nd, Sm, and Ho complexation in chloride solutions at 100–250°C

  • S. A. Stepanchikova
  • G. R. Kolonin
Article

Abstract

Complex formation in Ln chloride solutions is studied by spectrophotometric method. Electronic absorption spectra of Nd3+, Sm3+, and Ho3+ ions are measured in the range of supersensitive transitions in solution with Cl ion concentration from 0 to 5 mol/l in 100–250°C temperature interval under saturated vapor pressure. The Nd and Sm spectra represent integrated curves that mainly consist of Ln3+ and LnCl2+ absorption bands (with stability constant β1), while the Ho spectra consist of Ho3+ and HoCl 2 + absorption bands (with β2). The stability constants β1 and β2 calculated for each wave number by linear regression method acquire steady values and have the meaning of the best unbiased linear estimates. Thermodynamic values of logβ1 for Nd, Sm, and Ho monochlorides lie in a narrow interval at constant temperature. In the case of Nd and Sm, the temperature curves of logβ1 and logβ2 have smaller slopes as compared to that of Ho, which is explained by the effect of a covalent component in their spectra that adds to the ionic nature of the bonds in monochloride complexes. The β2 values increase in the order Nd<Sm<Ho in accordance with electrostatic model of a bond.

Keywords

Chloride Solution Electronic Absorption Spectrum Saturated Vapor Saturated Vapor Pressure Integrate Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Mal’kova, T.V., Shutova, G.A., and Yatsimirskii, K.B., Zh. Neorg. Khim., 1964, vol. 9, no.8, p. 1833.Google Scholar
  2. 2.
    Kozachenko, N.N., Batyaev, I.M., and Mironov, V.E., Zh. Neorg. Khim., 1970, vol. 15, no.3, p. 888.Google Scholar
  3. 3.
    Mironov, V.E. and Avramenko, V.I., Koord. Khim., 1982, vol. 8, no.8, p. 636.Google Scholar
  4. 4.
    Romanenko, E.O. and Kostromina, N.A., Zh. Neorg. Khim., 1967, vol. 12, no.8, p. 516.Google Scholar
  5. 5.
    Davidenko, N.K., Luzhina, L.N., and Yatsimirskii, K.B., Zh. Neorg. Khim., 1972, vol. 178, no.1, p. 636.Google Scholar
  6. 6.
    Mal’kova, T.V., Shutova, G.A., and Yatsimirskii, K.B., Zh. Neorg. Khim., 1966, vol. 11, no.7, p. 1556.Google Scholar
  7. 7.
    Selwood, P.W., J. Am. Chem. Soc., 1930, vol. 52, p. 4308.Google Scholar
  8. 8.
    Judd, B.R., Lanthanide and Actinide Chemistry and Spectroscopy, Washington, DC: Am. Chem. Soc, 1980, p. 267.Google Scholar
  9. 9.
    Poluektov, N.S., Kononenko, L.I., Efryushina, N.P., and Bel’tyukova, S.V., Spektrofotometricheskie i lyuminestsentnye metody opredeleniya lantanoidov (Spectrophotometric and Luminescence Methods for Determination of Lanthanides), Kiev: Naukova Dumka, 1989.Google Scholar
  10. 10.
    Bell, J.T., Thompson, C.C., and Helton, D.M., J. Chem. Soc., 1969, vol. 73, no.19, p. 3338.Google Scholar
  11. 11.
    Wood, S.A., Chem. Geol., 1990, vol. 73, no.19, p. 3338.Google Scholar
  12. 12.
    Haas, J.R., Shock, E.L., and Sassani, D.C., Geochim. Cosmochim. Acta, 1995, vol. 59, no.21, p. 4325.Google Scholar
  13. 13.
    Gammons, C.H., Wood, S.A., and Williams-Jones, A.E., Geochim. Cosmochim. Acta, 1996, vol. 60, no.23, p. 4615.Google Scholar
  14. 14.
    Bakhshiev, N.G., Spektroskopiya mezhmolekulyarnykh vzaimodeistvii (Spectroscopy of Intermolecular Interactions), Leningrad: Nauka, 1972.Google Scholar
  15. 15.
    Stepanchikova, S.A., Dokl. Akad. Nauk, 1999, vol. 369, p. 517.Google Scholar
  16. 16.
    Bersuker, I.B., Elektronnoe stroenie i svoistva koordinatsionykh soedinenii (Electronic Structure and Properties of Coordination Compounds), Leningrad: Khimiya, 1976.Google Scholar
  17. 17.
    Sviridov, D.E. and Smirnov, Yu.F., Teoriya opticheskikh spektrov ionov perekhodnykh metallov (Theory of Optical Spectra of Transition Metal Ions), Moscow: Nauka, 1977.Google Scholar
  18. 18.
    Judd, B.R., Phys. Rev., 1962, vol. 127, no.3, p. 750.Google Scholar
  19. 19.
    Offelt, G.S., J. Chem. Phys., 1962, vol. 37, no.3, p. 511.Google Scholar
  20. 20.
    Bel’tyukova, S.V., Poluektov, N.S., and Nazarenko, N.A., Dokl. Akad. Nauk SSSR, 1982, vol. 264, no.5, p. 1146.Google Scholar
  21. 21.
    Poluektov, N.S., Alakaeva, L.A., and Tishchenko, M.A., Zh. Prikl. Spectrosk., 1972, vol. 17, no.5, p. 819.Google Scholar
  22. 22.
    Yatsimirskii, K.B., Kostromina, N.A., Sheka, Z.A., et al., Khimiya kompleksnykh soedinenii redkozemel’nykh elementov (Chemistry of Rare-Earth Complex Compounds), Kiev: Naukova Dumka, 1966.Google Scholar
  23. 23.
    Helgeson, H.C., Am. J. Sci., 1966, vol. 267, no.7, p. 729.Google Scholar
  24. 24.
    Naumov, G.B., Ryzhenko, B.N., and Khodakovskii, I.L., Spravochnik termodinamicheskikh velichin (Thermodynamic Data Handbook), Moscow: Atomizdat, 1971.Google Scholar
  25. 25.
    Bryzgalin, O.V., Geokhimiya, 1985, no. 8, p. 1184.Google Scholar
  26. 26.
    Tagirov, B.R., Zotov, A.V., and Akinfiev, N.N., Geochim. Cosmochim. Acta, 1967, vol. 61, no.29, p. 4267.Google Scholar
  27. 27.
    El’yashevich, M.A., Atomnaya i molekulyarnaya spektroskopiya (Atomic and Molecular Spectroscopy), Moscow: Gos. Izd. Fiz.-mat. Lit, 1962.Google Scholar
  28. 28.
    Belevantsev, V.I. and Malkova V.I., Pryamye i obratnye zadachi khimicheskoi termodinamiki (Direct and Inverse Problems of Chemical Thermodynamics), Novosibirsk: Nauka, 1987.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • S. A. Stepanchikova
    • 1
  • G. R. Kolonin
    • 1
  1. 1.Institute of Mineralogy and Petrography, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations