Quaternary 2-R-5,6-dihydro-1,2,4-triazolo[3,4-a]isoquinolin-2-ium salts and PEPPSI complexes based thereof

Abstract

Alkylation of substituted 5,6-dihydro-1,2,4-triazolo[3,4-a]isoquinolines with iodomethane, 2-iodopropane, or substituted benzyl halides (R—Hal) afforded quaternary 2-R-5,6-dihydro-1,2,4-triazolo[3,4-a]isoquinolinium salts, for which a possibility of the formation of carbene PEPPSI complexes with palladium(ɪɪ) and pyridine, as well as 2-, 3-, and 4-picolines, was demonstrated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. I. Sokol, V. V. Davydov, N. Yu. Merkur’eva, S. A. Pervushina, M. A. Ryabov, V. S. Sergienko, V. A. Glushkov, Yu. V. Shklyaev, Russ. J. Inorg. Chem., 2003, 48, 217.

    Google Scholar 

  2. 2.

    V. I. Sokol, V. V. Davydov, N. Yu. Merkur’eva, S. A. Vas’kina, M. A. Ryabov, V. S. Sergienko, Yu. V. Shklyaev, Russ. J. Inorg. Chem., 2001, 46, 845.

    Google Scholar 

  3. 3.

    V. I. Sokol, V. V. Davydov, N. Yu. Merkur’eva, V. S. Sergienko, S. A. Pervushina, Yu. V. Shklyaev, V. A. Glushkov, Russ. J. Inorg. Chem., 2003, 48, 1147.

    Google Scholar 

  4. 4.

    V. I. Sokol, V. V. Davydov, M. A. Ryabov, N. Yu. Merkur’eva, V. S. Sergienko, Yu. V. Shklyaev, Russ. J. Inorg. Chem., 2000, 45, 528.

    Google Scholar 

  5. 5.

    V. I. Sokol, V. V. Davydov, S. A. Pervushina, N. Yu. Merkur’eva, V. S. Sergienko, Yu. V. Shklyaev, Russ. J. Inorg. Chem., 2003, 48, 211.

    Google Scholar 

  6. 6.

    A. Fürstner, L. Ackermann, B. Gabor, R. Goddard, C. W. Lehmann, R. Mynott, F. Stelzer, O. R. Thiel, Chem. Eur. J., 2001, 7, 3236; DOI: https://doi.org/10.1002/1521-3765(20010803)7:15%3C3236::AID-CHEM3236%3E3.0.CO;2-S.

    Article  Google Scholar 

  7. 7.

    T. M. Trnka, J. P. Morgan, M. S. Sanford, T. E. Wilhelm, M. Scholl, T.-L. Choi, S. Ding, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc., 2003, 125, 2546; DOI: https://doi.org/10.1021/ja021146w.

    CAS  Article  Google Scholar 

  8. 8.

    R. Gawin, M. Pieczykolan, M. Malińska, K. Woźniak, K. Grela, Synlett, 2013, 24, 1250; DOI: https://doi.org/10.1055/s-0033-1338877.

    CAS  Article  Google Scholar 

  9. 9.

    T. Sato, Y. Hirose, D. Yoshioka, T. Shimojo, S. Oi, Chem. Eur. J., 2013, 19, 15710; DOI: https://doi.org/10.1002/chem.201302567.

    CAS  Article  Google Scholar 

  10. 10.

    J. Iglesias-Sigüenza, A. Ros, E. Díez, M. Alcarazo, E. Álvarez, R. Fernández, J. M. Lassaletta, Dalton Trans., 2009, 7113; DOI: https://doi.org/10.1039/B907043E.

  11. 11.

    J. Turek, Z. Růžičková, E. Tloušt’ová, H. Mertlíková-Kaiserová, J. Günterová, L. Rulíšek, A. Růžička, Appl. Organomet. Chem., 2016, 30, 318; DOI: https://doi.org/10.1002/aoc.3434.

    CAS  Article  Google Scholar 

  12. 12.

    Y. Ma, S. Wei, J. Lan, J. Wang, R. Xie, J. You, J. Org. Chem., 2008, 73, 8256; DOI: https://doi.org/10.1021/jo801349d.

    CAS  Article  Google Scholar 

  13. 13.

    J. Turek, I. Panov, M. Semler, P. Štĕpnička, F. De Proft, Z. Padĕlková, A. Růžička, Organometallics, 2014, 33, 3108; DOI: https://doi.org/10.1021/om500342z.

    CAS  Article  Google Scholar 

  14. 14.

    A. A. Astakhov, O. V. Khazipov, E. S. Degtyareva, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2015, 34, 5759; DOI: https://doi.org/10.1021/acs.organomet.5b00856.

    CAS  Article  Google Scholar 

  15. 15.

    A. Zanardi, J. A. Mata, E. Peris, J. Am. Chem. Soc., 2009, 131, 14531; DOI: https://doi.org/10.1021/ja906028g.

    CAS  Article  Google Scholar 

  16. 16.

    C. Dash, M. M. Shaikh, P. Ghosh, Eur. J. Inorg. Chem., 2009, 2009, 1608; DOI: https://doi.org/10.1002/ejic.200900115.

    Article  Google Scholar 

  17. 17.

    A. Zanardi, J. A. Mata, E. Peris, Organometallics, 2009, 28, 4335; DOI: https://doi.org/10.1021/om900358r.

    CAS  Article  Google Scholar 

  18. 18.

    A. Kumar, M. K. Gangwar, A. P. Prakasham, D. Mhatre, A. C. Kalita, P. Ghosh, Inorg. Chem., 2016, 55, 2882; DOI: https://doi.org/10.1021/acs.inorgchem.5b02727.

    CAS  Article  Google Scholar 

  19. 19.

    A. V. Astakhov, O. V. Khazipov, A. Y. Chernenko, D. V. Pasyukov, A. S. Kashin, E. G. Gordeev, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2017, 36, 1981; DOI: https://doi.org/10.1021/acs.organomet.7b00184.

    CAS  Article  Google Scholar 

  20. 20.

    C. J. O’Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ, Chem. Eur. J., 2006, 12, 4743; DOI: https://doi.org/10.1002/chem.200600251.

    Article  Google Scholar 

  21. 21.

    E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Angew. Chem., Int. Ed., 2007, 46, 2768; DOI: https://doi.org/10.1002/anie.200601663.

    CAS  Article  Google Scholar 

  22. 22.

    M. S. Denisov, M. V. Dmitriev, D. V. Eroshenko, P. A. Slepukhin, S. P. Shavkunov, V. A. Glushkov, Russ. J. Inorg. Chem., 2019, 64, 56; DOI: https://doi.org/10.1134/S0036023619010054.

    CAS  Article  Google Scholar 

  23. 23.

    V. A. Glushkov, M. S. Denisov, A. A. Gorbunov, Yu. A. Myalitzin, M. V. Dmitriev, P. A. Slepukhin, Chem. Heterocycl. Compd., 2019, 55, 217; DOI: https://doi.org/10.1007/s10593-019-02445-1.

    CAS  Article  Google Scholar 

  24. 24.

    M. S. Denisov, M. V. Dmitriev, A. A. Gorbunov, V. A. Glushkov, Russ. Chem. Bull., 2019, 68, 2039; DOI: https://doi.org/10.1007/s11172-019-2664-3.

    CAS  Article  Google Scholar 

  25. 25.

    V. A. Glushkov, E. V. Vedernikova, M. S. Kotelev, E. V. Baigacheva, Russ. J. Org. Chem., 2008, 44, 1091; DOI: https://doi.org/10.1134/S1070428008070270.

    CAS  Article  Google Scholar 

  26. 26.

    V. A. Glushkov, Yu. V. Shklyaev, O. A. Maiorova, G. A. Postanogova, E. V. Feshina, Chem. Heterocycl. Compd., 2000, 36, 319; DOI: https://doi.org/10.1007/BF02256870.

    CAS  Article  Google Scholar 

  27. 27.

    A. Yu. Chernenko, A. V. Astakhov, D. V. Pasyukov, P. V. Dorovatovskii, Ya. V. Zubavichus, V. N. Khrustalev, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 79; DOI: https://doi.org/10.1007/s11172-018-2040-8.

    CAS  Article  Google Scholar 

  28. 28.

    G. M. Sheldrick, ActaCryst., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Google Scholar 

  29. 29.

    G. M. Sheldrick, ActaCryst., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Google Scholar 

  30. 30.

    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Glushkov.

Additional information

The work was carried out in the framework of the Russian state assignment No. AAA-A18-118030790037-7 using the equipment of the Center for Collective Use “Research of Materials and Substances” of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 122–127, January, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glushkov, V.A., Babentzev, D.N., Dmitriev, M.V. et al. Quaternary 2-R-5,6-dihydro-1,2,4-triazolo[3,4-a]isoquinolin-2-ium salts and PEPPSI complexes based thereof. Russ Chem Bull 70, 122–127 (2021). https://doi.org/10.1007/s11172-021-3065-y

Download citation

Key words

  • 1,2,4-triazolo[3,4-a]isoquinolines
  • N-heterocyclic carbenes
  • palladium
  • PEPPSI complexes