The activity of monomeric and polymeric nickel complexes with Salen-type ligands as photosensitive materials for electrochemical solar cells

Abstract

The influence of polymerization conditions on the photovoltaic effect in polymeric nickel complexes with salen-type ligands in an aprotic electrolyte was studied. The possibility of using both monomeric and polymeric nickel complexes with salen-type ligands as active materials for electrochemical solar cells was investigated. It was shown that the hydroxyl-substituted monomeric complex could potentially be used as anode sensitizer in the Grätzel cell, while the polymeric complex could be used as active cathode material for photoelectrochemical cells with an aprotic electrolyte.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Almosni, A. Delamarre, Z. Jehl, D. Suchet, L. Cojocaru, M. Giteau, B. Behaghel, A. Julian, C. Ibrahim, L. Tatry, H. Wang, T. Kubo, S. Uchida, H. Segawa, N. Miyashita, R. Tamaki, Y. Shoji, K. Yoshida, N. Ahsan, K. Watanabe, T. Inoue, M. Sugiyama, Y. Nakano, T. Hamamura, T. Toupance, C. Olivier, S. Chambon, L. Vignau, C. Geffroy, E. Cloutet, G. Hadziioannou, N. Cavassilas, P. Rale, A. Cattoni, S. Collin, F. Gibelli, M. Paire, L. Lombez, D. Aureau, M. Bouttemy, A. Etcheberry, Y. Okada, J.-F. Guillemoles, Sci. Technol. Adv. Mater., 2018, 19, 336; DOI: https://doi.org/10.1080/14686996.2018.1433439.

    CAS  Article  Google Scholar 

  2. 2.

    S. Saha, P. Das, A. K. Chakraborty, S. Sarkar, R. Debbarma, Int. J. Renew. Energy Res., 2016, 6, 620.

    Google Scholar 

  3. 3.

    I. Erden, C. Cebeci, F. Aytan Kilicarslan, J. Coord. Chem., 2017, 70, 2334; DOI: https://doi.org/10.1080/00958972.2017.1354127.

    CAS  Article  Google Scholar 

  4. 4.

    J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Renew. Sustain. Energy Rev., 2017, 68, 234; DOI: https://doi.org/10.1016/j.rser.2016.09.097.

    CAS  Article  Google Scholar 

  5. 5.

    K. Sharma, V. Sharma, S. S. Sharma, Nanoscale Res. Lett., 2018, 13, 381; DOI: https://doi.org/10.1186/s11671-018-2760-6.

    Article  Google Scholar 

  6. 6.

    T. Duchanois, L. Liu, M. Pastore, A. Monari, C. Cebrián, Y. Trolez, M. Darari, K. Magra, A. Francés-Monerris, E. Domenichini, M. Beley, X. Assfeld, S. Haacke, P. Gros, Inorganics, 2018, 6, 63; DOI: https://doi.org/10.3390/inorganics6020063.

    Article  Google Scholar 

  7. 7.

    A. Guerrero, M. Haro, S. Bellani, M. R. Antognazza, L. Meda, S. Gimenez, J. Bisquert, Energy Environ. Sci., 2014, 7, 3666; DOI: https://doi.org/10.1039/C4EE01775G.

    CAS  Article  Google Scholar 

  8. 8.

    A. S. Konev, M. Y. Kayumov, M. P. Karushev, Y. V. Novoselova, D. A. Lukyanov, E. V. Alekseeva, O. V. Levin, ChemElectroChem, 2018, 5, 3138; DOI: https://doi.org/10.1002/celc.201800846.

    CAS  Article  Google Scholar 

  9. 9.

    I. A. Chepurnaya, S. A. Logvinov, M. P. Karushev, A. M. Timonov, V. V. Malev, Russ. J. Electrochem. (Engl. Transl.), 2012, 48, 538; DOI: https://doi.org/10.1134/S1023193512040040].

    CAS  Article  Google Scholar 

  10. 10.

    E. V. Alekseeva, I. A. Chepurnaya, V. V. Malev, A. M. Timonov, O. V. Levin, Electrochim. Acta, 2017, 225, 378; DOI: https://doi.org/10.1016/j.electacta.2016.12.135.

    CAS  Article  Google Scholar 

  11. 11.

    J.-M. Ji, S. H. Kim, H. Zhou, C. H. Kim, H. K. Kim, ACS Appl. Mater. Inter., 2019, 11, 24067; DOI: https://doi.org/10.1021/acsami.9b05510.

    CAS  Article  Google Scholar 

  12. 12.

    X. Liu, Z. Cao, H. Huang, X. Liu, Y. Tan, H. Chen, Y. Pei, S. Tan, J. Power Sources, 2014, 248, 400; DOI: https://doi.org/10.1016/j.jpowsour.2013.09.106.

    CAS  Article  Google Scholar 

  13. 13.

    Y. N. Luponosov, A. N. Solodukhin, S. A. Ponomarenko, Polym. Sci., Ser. C, 2014, 56, 104; DOI: https://doi.org/10.1134/S181123821401007X.

    CAS  Article  Google Scholar 

  14. 14.

    US Pat. 6580026; 2003.

  15. 15.

    D. Kilinc, O. Sahin, S. Horoz, J. Ovonic Res., 2018, 14, 71.

    CAS  Google Scholar 

  16. 16.

    Y. Saygili, M. Stojanovic, N. Flores-Díaz, S. M. Zakeeruddin, N. Vlachopoulos, M. Grätzel, A. Hagfeldt, Inorganics, 2019, 7, 30; DOI: https://doi.org/10.3390/inorganics7030030.

    CAS  Article  Google Scholar 

  17. 17.

    E. A. Smirnova, M. A. Besedina, M. P. Karushev, V. V. Vasil’ev, A. M. Timonov, Russ. J. Phys. Chem. A (Engl. Transl.), 2016, 90, 1088; DOI: https://doi.org/10.1134/S0036024416050319.

    CAS  Article  Google Scholar 

  18. 18.

    P. Pfeiffer, E. Breith, E. Lübbe, T. Tsumaki, Justus Liebigs Ann. Chem., 1933, 503, 84; DOI: https://doi.org/10.1002/jlac.19335030106.

    CAS  Article  Google Scholar 

  19. 19.

    R. Sayre, J. Am. Chem. Soc., 1955, 77, 6689; DOI: https://doi.org/10.1021/ja01629a112.

    CAS  Article  Google Scholar 

  20. 20.

    R. H. Holm, G. W. Everett, A. Chakravorty, Progr. Inorg. Chem., 1966, 7, 83; DOI: https://doi.org/10.1002/9780470166086.ch3.

    CAS  Google Scholar 

  21. 21.

    C. Freire, B. de Castro, J. Chem. Soc., Dalton Trans., 1998, 1491; DOI: https://doi.org/10.1039/A708231B.

  22. 22.

    D. Vitalini, P. Mineo, S. Di Bella, I. Fragalà, P. Maravigna, E. Scamporrino, Macromol., 1996, 29, 4478; DOI: https://doi.org/10.1021/ma9516403.

    CAS  Article  Google Scholar 

  23. 23.

    E. A. Dmitrieva, S. A. Logvinov, V. V. Kurdakova, V. V. Kondrat’ev, V. V. Malev, A. M. Timonov, Russ. J. Electrochem. (Engl. Transl.), 2005, 41, 381; DOI: https://doi.org/10.1007/s11175-005-0079-y.

    CAS  Article  Google Scholar 

  24. 24.

    T. Y. Rodyagina, P. V. Gaman’kov, E. A. Dmitrieva, I. A. Chepurnaya, S. V. Vasil’eva, A. M. Timonov, Russ. J. Electrochem. (Engl. Transl.), 2005, 41, 1101; DOI: https://doi.org/10.1007/s11175-005-0079-y.

    CAS  Article  Google Scholar 

  25. 25.

    S. V. Vasil’eva, I. A. Chepurnaya, S. A. Logvinov, P. V. Gaman’kov, A. M. Timonov, Russ. J. Electrochem. (Engl. Transl.), 2003, 39, 310; DOI: https://doi.org/10.1023/A:1022836113222.

    Article  Google Scholar 

  26. 26.

    C. E. Dahm, D. G. Peters, J. Simonet, J. Electroanal. Chem., 1996, 410, 163; DOI: https://doi.org/10.1016/0022-0728(95)04520-1.

    Article  Google Scholar 

  27. 27.

    J. R. Jennings, Q. Wang, J. Phys. Chem. C, 2010, 114, 1715; DOI: https://doi.org/10.1021/jp9104129.

    CAS  Article  Google Scholar 

  28. 28.

    S. Akine, J. Incl. Phenom. Macrocycl. Chem., 2012, 72, 25; DOI: https://doi.org/10.1007/s10847-011-0026-3.

    CAS  Article  Google Scholar 

  29. 29.

    L. A. Dobrzañski, A. Mucha, M. P. vel Prokopowicz, M. Szindler, A. Drygaia, K. Lukaszkowicz, Mater. Tehnol., 2016, 50, 649; DOI: https://doi.org/10.17222/mit.2014.134.

    Article  Google Scholar 

  30. 30.

    M. P. Karushev, A. M. Timonov, Russ. J. Appl. Chem. (Engl. Transl.), 2012, 85, 914; DOI: https://doi.org/10.1134/S1070427212050134.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. P. Karushev.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 107–112, January, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Besedina, M.A., Smirnova, E.A., Poturai, D.O. et al. The activity of monomeric and polymeric nickel complexes with Salen-type ligands as photosensitive materials for electrochemical solar cells. Russ Chem Bull 70, 107–112 (2021). https://doi.org/10.1007/s11172-021-3063-0

Download citation

Key words

  • photoelectrochemical cell
  • conductive polymers
  • salen-type complexes
  • photovoltaic effect
  • photogalvanic effect