Skip to main content
Log in

Crystal packing features of potentially mesomorphic organic compounds; phase transitions in 4-(tetradecyloxy)phenacyl thiocyanate NCS-CH2-C(O)-C6H4-OC14H29

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

4-(Tetradecyloxy)phenacyl thiocyanate NCS—CH2—C(O)—C6H4—OC14H29 was studied by differential scanning calorimetry (DSC) and X-ray diffraction. According to the DSC analysis, this compound does not form a mesophase upon melting or cooling of the isotropic melt. The crystal-I—crystal-II phase transition with a small enthalpy, which is not accompanied by mechanical degradation of the crystal, occurs at 68.8 °C prior to the melting of the crystals (82.5 °C). The crystal and molecular structure of the compound was studied by X-ray diffraction at temperatures below (22 °C) and above (73 °C) the temperature of the phase transition in the crystal. Both crystalline phases have nearly identical structures. The crystal packing consists of alternating loosely packed aliphatic and closely packed aromatic regions, which is typical of crystals of mesomorphic compounds. In the aromatic regions of the crystal packing, there are intermolecular S…S contacts. In the low-temperature phase crystal-I, the S…S distances equal to 3.458 Å correspond to a non-covalent interaction, through which the molecules are linked into centrosymmetric dimers. In the high-temperature phase, the S…S distances are increased to 3.623 Å, which corresponds to twice the van der Waals radius of sulfur. The absence of mesomorphism in the compound is attributed to the fact that, upon heating, the crystal undergoes a transition to another phase, which contains no structural elements responsible for the structuring of the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Kuz’mina, P. Kalle, A. V. Churakov, Russ. Chem. Bull., 2020, 69, 1054.

    Article  Google Scholar 

  2. I. I. Konstantinov, A. V. Churakov, L. G. Kuz’mina, Crystallogr. Reports, 2013, 58, 81.

    Article  CAS  Google Scholar 

  3. L. G. Kuz’mina, M. A. Gunina, A. V. Churakov, S. M. Pestov, Crystallogr. Reports, 2013, 58, 253.

    Article  Google Scholar 

  4. L. G. Kuz’mina, I. I. Konstantinov, E. K. Lermontova, Mol. Cryst. Liq. Cryst., 2014, 588, 1.

    Article  Google Scholar 

  5. L. G. Kuz’mina, I. I. Konstantinov, S. I. Bezzubov, High Energy Chem., 2016, 50, 453.

    Article  Google Scholar 

  6. L. G. Kuz’mina, I. I. Konstantinov, A. V. Churakov, M. A. Navasardyan, Acta Cryst. E, 2017, 73, 1052.

    Article  Google Scholar 

  7. L. G. Kuz’mina, I. I. Konstantinov, A. V. Churakov, Mol. Cryst. Liq. Cryst., 2018, 664, 95.

    Article  Google Scholar 

  8. L. G. Kuz’mina, M. A. Navasardyan, I. I. Konstantinov, Crystallogr. Reports, 2019, 64, 76.

    Article  Google Scholar 

  9. B. Donnio, S. Buathong, I. Bury, D. Guillon, Chem. Soc. Rev., 2007, 36, 1495.

    Article  CAS  Google Scholar 

  10. O. Lehman, Uber flussige Kristalle, Z. Phys. Chem., 1889, 4, 462.

    Google Scholar 

  11. W. Maier, A. Saupe, Z. Naturforsch, 1960, 15a, 287.

    Article  CAS  Google Scholar 

  12. R. L. Humphrie, P. G. Jame, G. R. Luckhurs, J. Chem. Soc., Faraday Trans. 2, 1972, 68, 1031.

    Article  Google Scholar 

  13. P. G. De Gennes, Mol. Cryst. Liq. Cryst., 1973, 21, 49.

    Article  CAS  Google Scholar 

  14. W. L. Mc Millan, Phys. Rev. A, 1973, 8, 1921.

    Article  CAS  Google Scholar 

  15. A. Wulf, Phys. Rev. A, 1975, 11, 365.

    Article  CAS  Google Scholar 

  16. M. A. Cotter, Mol. Cryst. Liq. Cryst., 1983, 97, 29.

    Article  CAS  Google Scholar 

  17. M. A. Osipov, Molecular Theories of Liquid Crystals. Sections 2, Ch. III, V. 1, in Handbook of Liquid Crystals, Eds D. Demus, J. Goodby, G. W. Gray, H.-W. Spies, V. Vill, Weinheim, Wiley-VCH, 1998, p. 40.

    Chapter  Google Scholar 

  18. G. Vertoge, W. H. Jeu, Thermotropic Liquid Crystals, Fundamentals, Springer-Verlag, Berlin, 1988, 324.

    Book  Google Scholar 

  19. P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Oxford University Press, New York, 1995, 616 p.

    Book  Google Scholar 

  20. S. Singh, Phys. Rep., 2000, 324, 2–4, 107.

    Article  Google Scholar 

  21. C. R. Groon, F. H. Allen, Angew. Chem., 2014, 53, 662.

    Article  Google Scholar 

  22. SAINT. Version 6.02A, Bruker AXS, Madison, W1, 2001.

  23. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Pushman, J. Appl. Crystallogr., 2009, 42, 339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Kuz’mina.

Additional information

The X-ray diffraction study was performed using equipment of the Shared Facility Center of the N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences.

This work was financially supported by the Russian Science Foundation (Project No. 16-13-10273).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 32–38, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’mina, L.G., Churakov, A.V., Navasardyan, M.A. et al. Crystal packing features of potentially mesomorphic organic compounds; phase transitions in 4-(tetradecyloxy)phenacyl thiocyanate NCS-CH2-C(O)-C6H4-OC14H29. Russ Chem Bull 70, 32–38 (2021). https://doi.org/10.1007/s11172-021-3053-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3053-2

Key words

Navigation