Skip to main content
Log in

New tetrylenes based on substituted diethylenetriamines: synthesis and use as initiators for ε-caprolactone polymerization

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reactions of 3-benzyl-1,5-ditosyl-1,3,5-triazapentane (1) and 3-benzyl-1,5-dimesityl- 1,3,5-triazapentane (2) with one equivalent of Lappert´s germylene or stannylene (M[N(SiMe3)2]2, where M = Ge, Sn) produced germylenes and stannylenes of the general formula PhCH2N(CH2CH2NR)2M, where M = Ge, R = 4-MeC6H4SO2– (3); 2,4,6-Me3C6H2– (5); M = Sn, R = 4-MeC6H4SO2– (4); 2,4,6-Me3C6H2– (6), in satisfactory yields. According to NMR data (1H, 13C, 119Sn), stannylenes 4 and 6 are monomeric in solution, and the coordination number of tin is four. The synthesized stannylenes exhibited very high (compound 4) and moderate (compound 6) activity as initiators for bulk polymerization of ε-caprolactone, resulting in the synthesis of high-molecular-weight polymers with relatively narrow molecular-weight distribution. Previously unknown triamine 2 was synthesized by benzylation of HN(CH2CH2NHMes)2 with benzyl chloride in the presence of K2CO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Harris, M. F. Lappert, J. Chem. Soc., Chem. Commun., 1974, 21, 895.

    Article  Google Scholar 

  2. Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev., 2009, 109, 3479.

    Article  CAS  Google Scholar 

  3. M. Weidenbruch, J. Organomet. Chem., 2002, 646, 39.

    Article  CAS  Google Scholar 

  4. L. Álvarez-Rodríguez, J. A. Cabeza, P. García-Álvarez, D. Polo, Coord. Chem. Rev., 2015, 300, 1.

    Article  Google Scholar 

  5. Y. Sarazin, J.-F. Carpentier, Chem. Rev., 2015, 115, 3564.

    Article  CAS  Google Scholar 

  6. O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev., 2004, 104, 6147.

    Article  CAS  Google Scholar 

  7. P. Degeé, P. Dubois, R. Jerôme, S. Jacobsen, H.-G. Fritz, Macromol. Symp., 1999, 144, 289.

    Article  Google Scholar 

  8. C.-M. Dong, K.-Y. Qiu, Z.-W. Gu, X.-D. Feng, Macromolecules, 2001, 34, 4691.

    Article  CAS  Google Scholar 

  9. Y. Nakayama, K. Aihara, Z. Cai, T. Shiono, C. Tsutsumi, Int. J. Mol. Sci., 2017, 18, 1312.

    Article  Google Scholar 

  10. L. Wang, S. C. Rosca, V. Poirier, S. Sinbandhit, V. Dorcet, T. Roisnel, J. F. Carpentier, Y. Sarazin, Dalton Trans., 2014, 43, 4268.

    Article  CAS  Google Scholar 

  11. L. Wang, V. Poirier, F. Ghiotto, M. Bochmann, R. D. Cannon, J. F. Carpentier, Y. Sarazin, Macromolecules, 2014, 47, 2574.

    Article  CAS  Google Scholar 

  12. L. Wang, C. E. Kefalidis, S. Sinbandhit, V. Dorcet, J. F. Carpentier, L. Maron, Y. Sarazin, Chem.–A Eur. J., 2013, 19, 13463.

    Article  CAS  Google Scholar 

  13. V. Poirier, T. Roisnel, S. Sinbandhit, M. Bochmann, J. F. Carpentier, Y. Sarazin, Chem.–A Eur. J., 2012, 18, 2998.

    Article  CAS  Google Scholar 

  14. K. B. Aubrecht, M. A. Hillmyer, W. B. Tolman, Macromolec ules, 2002, 35, 644.

    Article  CAS  Google Scholar 

  15. A. P. Dove, V. C. Gibson, E. L. Marshall, A. J. P. White, D. J. Williams, Chem. Commun., 2001, 283.

    Google Scholar 

  16. A. P. Dove, V. C. Gibson, E. L. Marshall, H. S. Rzepa, A. J. P. White, D. J. Williams, J. Am. Chem. Soc., 2006, 128, 9834.

    Article  CAS  Google Scholar 

  17. N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, A. J. P. White, S. H. Dale, M. R. J. Elsegood, J. Chem. Soc., Dalton Trans., 2007, 47, 4464.

    Article  Google Scholar 

  18. N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, M. R. J. Elsegood, J. Chem. Soc., Dalton Trans., 2009, 3710.

    Google Scholar 

  19. A. Dumitrescu, B. Martin-Vaca, H. Gornitzka, J. Cazaux, D. Bourissou, G. Bertrand, Eur. J. Inorg. Chem., 2002, 1948.

    Google Scholar 

  20. B. N. Mankaev, K. V. Zaitsev, V. S. Timashova, G. S. Zaitseva, M. P. Egorov, S. S. Karlov, Russ. Chem. Bull., 2018, 67, 542.

    Article  CAS  Google Scholar 

  21. N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, M. R. J. Elsegood, Inorg. Chem., 2008, 47, 5417.

    Article  CAS  Google Scholar 

  22. W. A. Ma, Z. X. Wang, Dalton Trans., 2011, 40, 1778.

    Article  CAS  Google Scholar 

  23. K. Phomphrai, C. Pongchan-o, W. Thumrongpatanaraks, P. Sangtrirutnugul, P. Kongsaeree, M. Pohmakotr, Dalton Trans., 2011, 40, 2157.

    Article  CAS  Google Scholar 

  24. J. L. Fauré, H. Gornitzka, R. Réau, D. Stalke, G. Bertrand, Eur. J. Inorg. Chem., 1999, 2295.

    Google Scholar 

  25. M. Huang, M. M. Kireenko, E. K. Lermontova, A. V. Churakov, Y. F. Oprunenko, K. V. Zaitsev, D. Sorokin, K. Harms, J. Sundermeyer, G. S. Zaitseva, S. S. Karlov, Z. Anorg. Allg. Chem., 2013, 639, 502.

    Article  CAS  Google Scholar 

  26. E. K. Lermontova, M. M. Huan, A. V. Churakov, J. A. K. Howard, M. V. Zabalov, S. S. Karlov, G. S. Zaitseva, J. Chem. Soc., Dalton Trans., 2009, 4695.

    Google Scholar 

  27. M. Huang, M. M. Kireenko, K. V. Zaitsev, Y. F. Oprunenko, A. V. Churakov, J. A. K. Howard, E. K. Lermontova, D. Sorokin, T. Linder, J. Sundermeyer, S. S. Karlov, G. S. Zaitseva, Eur. J. Inorg. Chem., 2012, 3712.

    Google Scholar 

  28. Y. Feng, J. Aponte, P. J. Houseworth, P. D. Boyle, E. A. Ison, Inorg. Chem., 2009, 48, 11058.

    Article  CAS  Google Scholar 

  29. K. C. Hultzsch, F. Hampel, T. Wagner, Organometallics, 2004, 23, 2601.

    Article  CAS  Google Scholar 

  30. P. E. Collier, S. M. Pugh, H. S. C. Clark, J. B. Love, A. J. Blake, F. G. N. Cloke, P. Mountford, Inorg. Chem., 2000, 39, 2001.

    Article  CAS  Google Scholar 

  31. D. J. Wilson, A. Sebastian, F. G. N. Cloke, A. G. Avent, P. B. Hitchcock, Inorg. Chim. Acta, 2003, 345, 89.

    Article  CAS  Google Scholar 

  32. R. R. Schrock, J. Adamchuk, K. Ruhland, L. P. H. Lopez, Organometallics, 2003, 22, 5079.

    Article  CAS  Google Scholar 

  33. A. D. Schwarz, Z. Chu, P. Mountford, Organometallics, 2010, 29, 1246.

    Article  CAS  Google Scholar 

  34. L.-C. Liang, R. R. Schrock, W. M. Davis, D. H. McConville, J. Am. Chem. Soc., 1999, 121, 5797.

    Article  CAS  Google Scholar 

  35. L. Wang, C. E. Kefalidis, T. Roisnel, S. Sinbandhit, L. Maron, J.-F. Carpentier, Y. Sarazin, Organometallics, 2015, 34, 2139.

    Article  CAS  Google Scholar 

  36. S. R. Foley, Y. Zhou, G. P. A. Yap, D. S. Richeson, Inorg. Chem., 2000, 39, 924.

    Article  CAS  Google Scholar 

  37. F. Antolini, P. B. Hitchcock, A. V. Khvostov, M. F. Lappert, Can. J. Chem., 2006, 84, 269.

    Article  CAS  Google Scholar 

  38. K. V. Zaitsev, V. S. Cherepakhin, A. V. Churakov, A. S. Peregudov, B. N. Tarasevich, M. P. Egorov, G. S. Zaitseva, S. S. Karlov, Inorg. Chim. Acta, 2016, 443

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Karlov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences A. I. Konovalov on the occasion of his 85th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0389–0393, February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mankaev, B.N., Zaitsev, K.V., Kuchuk, E.A. et al. New tetrylenes based on substituted diethylenetriamines: synthesis and use as initiators for ε-caprolactone polymerization. Russ Chem Bull 68, 389–393 (2019). https://doi.org/10.1007/s11172-019-2397-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2397-3

Key words

Navigation