Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 12, pp 2224–2229 | Cite as

Effect of promotion of nickel sulfide catalyst with silver on kinetics of decarbonilation of stearic acid

  • E. A. KatsmanEmail author
  • A. S. Berenblyum
  • V. Ya. Danyushevsky
  • V. M. Karpov
  • P. S. Kuznetsov
  • S. V. Leont´eva
  • V. R. Flid
Full Articles
  • 15 Downloads

Abstract

The kinetics of liquid-phase decarbonylation of stearic acid in n-dodecane on γ-Al2O3 supported nickel sulfide catalyst promoted with silver was experimentally studied at 350 °C. The parameters of the reaction steps were determined and a structural kinetic model was developed. The model was compared with an earlier developed kinetic model for the unpromoted catalyst. It was suggested that an increased reaction selectivity in the presence of silver promoted catalyst was caused by a change in the composition of the adsorption complexes formed by the active sites of the catalyst. This change in the composition of the complexes is probably associated with an increase in the average size of the surface active particles of the catalyst.

Key words

decarbonylation stearic acid higher olefins reaction kinetics kinetic model catalyst promotion inhibition heterogeneous catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. C. Foster, Sulfonation and Sulfation Processes, The Chemithon Corporation, Seattle, 1997.Google Scholar
  2. 2.
    Chemistry and Technology of Lubricants, Eds R. M. Mortier, M. Fox, S. T. Orszulik, Springer, New York, 3rd ed., 2010.Google Scholar
  3. 3.
    A. S. Berenblyum, V. Ya. Danyushevsky, P. S. Kuznetsov, E. A. Katsman, R. S. Shamsiev, Petrol. Chem. (Engl. Transl.), 2016, 56, 663.Google Scholar
  4. 4.
    V. Ya. Danyushevsky, P. S. Kuznetsov, E. A. Katsman, A. S. Kupriyanov, V. R. Flid, A. S. Berenblyum, Russ. Chem. Bull., 2017, 66, 463.CrossRefGoogle Scholar
  5. 5.
    V. Ya. Danyushevsky, V. Yu. Murzin, P. S. Kuznetsov, R. S. Shamsiev, E. A. Katsman, E. V. Khramov, Y. V. Zubavichus, A. S. Berenblyum, Russ. J. Phys. Chem. A, 2018, 92, 66.CrossRefGoogle Scholar
  6. 6.
    E. A. Katsman, V. Ya. Danyushevsky, P. S. Kuznetsov, R. S. Shamsiev, A. S. Berenblyum, Kinet. Catal., 2017, 58, 147.CrossRefGoogle Scholar
  7. 7.
    E. A. Katsman, V. Ya. Danyushevsky, P. S. Kuznetsov, V. M. Karpov, H. A. Al-Wadhaf, V. R. Flid, Petrol. Chem. (Engl. Transl.), 2017, 57, 1190.Google Scholar
  8. 8.
    V. G. Gorskii, E. A. Katsman, F. D. Klebanova, A. A. Grigor´ev, Theor. Exp. Chim. (Engl. Transl.), 1987, 23, 181.Google Scholar
  9. 9.
    E. A. Katsman, A. S. Berenblyum, Paket programm dlya postroeniya i analiza kineticheskikh modelei i ego primeneniya [Software for Building and Analysis of Kinetic Models and its Application], MITKHT, Moscow, 2010 (in Rissian).Google Scholar
  10. 10.
    V. G. Gorskii, Planirovanie kineticheskih experimentov [Kinetic Experiment Planning], Nauka, Moscow, 1984, 241 pp. (in Russian).Google Scholar
  11. 11.
    V. I. Bukhtiyarov, M. G. Slin´ko, Russ. Chem. Rev., 2001, 70, 147.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. A. Katsman
    • 1
    Email author
  • A. S. Berenblyum
    • 1
  • V. Ya. Danyushevsky
    • 1
  • V. M. Karpov
    • 1
  • P. S. Kuznetsov
    • 1
  • S. V. Leont´eva
    • 1
  • V. R. Flid
    • 1
  1. 1.MIREA – Russian Technological University, M. V. Lomonosov Institute of Fine Chemical TechnologyMoscowRussian Federation

Personalised recommendations