Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 12, pp 2184–2187 | Cite as

Complexation of gallium(III) nitrate with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonic acid)

  • G. S. TsebrikovaEmail author
  • R. T. Barsamian
  • V. P. Solov´ev
  • Z. A. Kudryashova
  • V. E. Baulin
  • Y. J. Wang
  • A. Yu. Tsivadze
Full Articles
  • 26 Downloads

Abstract

Eight dissociation constants of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis (methylene phosphonic acid) (DOTMP, H8L) were determined for the first time by potentiometric titration in water using the CHEMEQUI program. The stability constants of Ga3+ complexes with deprotonated forms of DOTMP were determined. The stability constant of the Ga3+ complex with the fully deprotonated DOTMP ligand, lg KML equal to 27.8, is higher than the corresponding constant for the Ga3+ complex with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), the ligand most widely used in radiopharmacy; it is also higher than the constant for the Ga3+ complex with plasma protein transferrin, which makes the DOTMP ligand very promising for the use in radiopharmacy.

Key words

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonic acid) gallium(IIIpotentiometric titration dissociation constant of acid stability constant of metal-ligand complex radiopharmaceuticals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. V. Devyatov, O. V. Bog atyrev, G. I. Zaripova, Russ. Chem. Bull., 2017, 66, 2090.CrossRefGoogle Scholar
  2. 2.
    V. E. Baulin, G. S. Tsebr ikova, D. V. Baulin, Y. F. Al Ansary, Biomedical Chemistry: Research and Methods, 2018, 1, e00043.Google Scholar
  3. 3.
    R. E. Mewis, S. J. Archib ald, Coord. Chem. Rev., 2010, 254, 1686.CrossRefGoogle Scholar
  4. 4.
    R. Delgado, V. Felix, L. M. P. Lima, D. W. Price, Dalton Trans., 2007, 2734.Google Scholar
  5. 5.
    E. W. Price, C. Orvig, Chem. Soc. Rev., 2014, 43, 260.CrossRefGoogle Scholar
  6. 6.
    P. Spang, C. Herrmann, F. Roesch, Semin. Nucl. Med., 2016, 46, 373.CrossRefGoogle Scholar
  7. 7.
    R. Bergmann, M. Meckel, V. Kubícek, J. Pietzsch, J. Steinbach, P. Hermann, F. Rösch, EJNMMI Res., 2016, 6, No. 5, 1.Google Scholar
  8. 8.
    T. J. Wadas, E. H. Wong, G. R. Weisman, C. J. Anderson, Chem. Rev., 2010, 110, 2858.CrossRefGoogle Scholar
  9. 9.
    N. I. Gorshkov, S. V. Shatik, A. V. Tokarev, I. I. Gavrilova, O. V. Nazarova, A. Yu. Murko, V. D. Krasikov, E. F. Panarin, Russ. Chem. Bull., 2017, 66, 156.CrossRefGoogle Scholar
  10. 10.
    M. I. Kabachnik, T. Ya. Medved´, F. I. Belśkii, S. A. Pisareva, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1984, 33, 777.CrossRefGoogle Scholar
  11. 11.
    C. F. G. C. Geraldes, A. D. Sherry, W. P. Cacheris, Inorg. Chem., 1989, 28, 3336.CrossRefGoogle Scholar
  12. 12.
    R. Delgado, L. C. Siegfried, T. A. Kaden, Helv. Chim. Acta, 1990, 73, 140.CrossRefGoogle Scholar
  13. 13.
    R. Delgado, J. Costa, K. P. Guerra, L. M. P. Lima, Pure Appl. Chem., 2005, 77, 569.CrossRefGoogle Scholar
  14. 14.
    I. Velikyan, J. Label Compd. Radiopharm., 2015, 58, 99.CrossRefGoogle Scholar
  15. 15.
    A. A. Larenkov, G. E. Kodina, A. B. Bruskin, Meditsinskaya radiologiya and radiatsionnaya bezopasnost´ [Medical Radiology and Radiation Safety], 2011, 56, 56 (in Russian).Google Scholar
  16. 16.
    G. S. Tsebrikova, V. E. Baulin, I. P. Kalashnikova, V. V. Ragulin, V. O. Zavelśkii, A. Ya. Maruk, A. S. Lunev, O. E. Klement´eva, G. E. Kodina, A. Yu. Tsivadze, Russ. J. Gen. Chem., 2015, 85, 2071.CrossRefGoogle Scholar
  17. 17.
    R. P. Baum, F. Rosch, Theranostics, Gallium-68, and Other Radionuclides. A Pathway to Personalized Diagnosis and Treatment, Springer, Heidelberg-New York-Dordrecht-London, 2013, 576 pp.CrossRefGoogle Scholar
  18. 18.
    W. R. Harris, L. A. Messori, Coord. Chem. Rev., 2002, 228, 237.CrossRefGoogle Scholar
  19. 19.
    W. R. Harris, V. Pecoraro, Bioche mistry, 1983, 22, 292.CrossRefGoogle Scholar
  20. 20.
    W. R. Harris, Y. Chen, K. Wein, Inorg. Chem., 1994, 33, 4991.CrossRefGoogle Scholar
  21. 21.
    I. Lazar, D. C. Hrncir, W.-D. Kim, G. E. Kiefer, A. D. Sherry, Inorg. Chem., 1992, 31, 4422.CrossRefGoogle Scholar
  22. 22.
    V. P. Solov´ev, Programma CHEMEQU Idlya rascheta konstant khimicheskikh ravnovesiy i soputstvuyushchikh parametrov, iskhodya iz eksperimental´nykh rezul´tatov fiziko-khimiches kikh metodov, takikh kak UF-, IK- i YAMR-spektroskopiya, kalorimetriya, potentsiometriya i konduktometriya [CHEMEQUI Program for Computations of Equilibrium Constants and Related Quantitiess from Experimental Results of UV-Vis, IR, and NMR Spectroscopy, Calorimetry, Potentiometry, and Conductometry] (in Russian); http://vpsolovev.ru/programs/ (Novem ber 24, 2018).
  23. 23.
    V. P. Solov´ev, A. Y. Tsivadze, Prot. Met. Phys. Chem. Surf., 2015, 51, 1.CrossRefGoogle Scholar
  24. 24.
    P. H. Muller, P. Neumann, R. Storm, Tafeln der mathematischen Statistik, VEB Fachbuchverlag, Leipzig, 1979.Google Scholar
  25. 25.
    A. E. Martell, R. J. Motekaitis, E. T. Clarke, R. Delgado, Y. Sun, R. Ma, Supramol. Chem., 1996, 6, 353.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. S. Tsebrikova
    • 1
    Email author
  • R. T. Barsamian
    • 2
  • V. P. Solov´ev
    • 1
  • Z. A. Kudryashova
    • 1
    • 2
  • V. E. Baulin
    • 1
    • 3
  • Y. J. Wang
    • 4
  • A. Yu. Tsivadze
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Russian Technological University, Lomonosov Moscow State University of Fine Chemical TechnologiesMoscowRussian Federation
  3. 3.Institute of Physiologically Active CompoundsRussian Academy of SciencesChernogolovkaRussian Federation
  4. 4.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations