Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 12, pp 2164–2171 | Cite as

Reactivity of an aluminum hydride complex with a redox-active diimine ligand

  • V. G. Sokolov
  • T. S. Koptseva
  • V. A. Dodonov
  • R. V. Rumyantsev
  • I. L. FedushkinEmail author
Full Articles

Abstract

The reaction of the hydride [(dpp-bian)Al(H)Cl] (1) containing the 1,2-bis[(2,6-diisopropylphenyl) imino]acenaphthene (dpp-bian) radical anion with MeLi affords the compound [(dpp-bian)Al(H)Me] (2). The reaction of complex 1 with two equivalents of PhC≡CNa involves the replacement of chlorine along with oxidative substitution of hydrogen accompanied by the reduction of dpp-bian to the dianion to form the compound [(dpp-bian)Al(C≡CPh)2Na(Et2O)2] ({sn3}). This reaction gives the complex [{dpp-bian(H)}Al(C≡CPh)3Na(Et2O)2] (4) as the second product, which is apparently generated in the reaction of compound 3 with PhC≡CH. The reaction of compound 1 with Cp*Na (Cp* is pentamethylcyclopentadiene) in dimethoxyethane is also accompanied by the reduction of redox-active dpp-bian to the dianion, giving the complex [(dpp-bian)Al(H)Cl][Na(DME)3] (5). Diamagnetic derivatives 3–5 were characterized by 1H NMR spectroscopy; paramagnetic compound 2, by EPR spectroscopy. The molecular structures of compounds 2–5 were determined by X-ray diffraction.

Key words

aluminum hydrides redox-active ligands diimine ligands molecular structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ziegler, E. Holzkamp, H. Breiland, H. Martin, Angew. Chem., 2003, 67, 541.CrossRefGoogle Scholar
  2. 2.
    G. J. Natta, Polym. Sci., 1955, 16, 143.CrossRefGoogle Scholar
  3. 3.
    V. Jancik, Y. Peng, H. W. Roesky, J. Li, D. Neculai, A. M. Neculai, R. Herbst-Irmer, J. Am. Chem. Soc., 2003, 125, 1452.CrossRefGoogle Scholar
  4. 4.
    Z. Yang, X. Ma, V. Jancik, Z. Zhang, H. W. Roesky, J. Magull, M. Noltemeyer, H.-G. Schmidt, R. Cea-Olivares, R. A. Toscano, Inorg. Chem., 2006, 45, 3312.CrossRefGoogle Scholar
  5. 5.
    Z. Yang, X. Ma, R. B. Oswald, H. W. Roesky, C. Cui, H.-G. Schmidt, M. Noltemeyer, Angew. Chem., 2006, 118, 2335.CrossRefGoogle Scholar
  6. 6.
    Z. Yang, X. Ma, H. W. Roesky, Y. Yang, J. Magull, A. Ringe, Inorg. Chem., 2007, 46, 7903.Google Scholar
  7. 7.
    Y. Peng, G. Bai, H. Fan, D. Vidovic, H. W. Roesky, J. Magull, Inorg. Chem., 2004, 43, 1217.CrossRefGoogle Scholar
  8. 8.
    S. Yow, S. J. Gates, A. J. P. White, M. R. Crimmin, Angew. Chem, Int. Ed., 2012, 51, 12559.CrossRefGoogle Scholar
  9. 9.
    C. Cui, H. W. Roesky, H. Hao, H.-G. Schmidt, M. Noltemeyer, Angew. Chem., Int. Ed., 2000, 39, 1815.CrossRefGoogle Scholar
  10. 10.
    N. Kuhn, S. Fuchs, M. Steimann, Eur. J. Inorg. Chem., 2001, 359.Google Scholar
  11. 11.
    L. Bourget-Merle, M. F. Lappert, J. R. Severn, Chem. Rev., 2002, 102, 3031.CrossRefGoogle Scholar
  12. 12.
    V. Jancik, Y. Peng, H. W. Roesky, J. Li, D. Neculai, A. M. Neculai, R. Herbst-Irmer, J. Am. Chem. Soc., 2003, 125, 1452.CrossRefGoogle Scholar
  13. 13.
    V. Jancik, M. M. M. Cabrera, H. W. Roesky, R. Herbst-Irmer, D. Neculai, A. M. Neculai, M. Noltemeyer, H.-G. Schmidt, Eur. J. Inorg. Chem., 2004, 3508.Google Scholar
  14. 14.
    S. S. Kumar, S. Singh, F. Hongjun, H. W. Roesky, D. Vidovic, J. Magull, Organometallics, 2004, 23, 6327.CrossRefGoogle Scholar
  15. 15.
    H. Zhu, Z. Yang, J. Magull, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, Organometallics, 2005, 24, 6420.CrossRefGoogle Scholar
  16. 16.
    Z. Yang, X. Ma, R. B. Oswald, H. W. Roesky, M. Noltemeyer, J. Am. Chem. Soc., 2006, 128, 12406.CrossRefGoogle Scholar
  17. 17.
    S. González-Gallardo, V. Jancik, R. Cea-Olivares, R. A. Toscano, M. Moya-Cabrera, Angew. Chem., Int. Ed., 2007, 46, 2895.CrossRefGoogle Scholar
  18. 18.
    W. Uhl, B. Jana, Chem. Eur. J., 2008, 14, 3067.CrossRefGoogle Scholar
  19. 19.
    F. Rascón-Cruz, R. Huerta-Lavorie, V. Jancik, R. A. Toscano, R. Cea-Olivares, Dalton Trans., 2009, 1195.Google Scholar
  20. 20.
    W. Uhl, B. Jana, J. Organomet. Chem., 2009, 694, 1101.CrossRefGoogle Scholar
  21. 21.
    X. Ma, Z. Yang, X. Wang, H. W. Roesky, F. Wu, H. Zhu, Inorg. Chem., 2011, 50, 2010.CrossRefGoogle Scholar
  22. 22.
    S. Harder, J. Spielmann, Chem. Commun., 2011, 47, 11945.CrossRefGoogle Scholar
  23. 23.
    P. Hao, Z. Yang, X. Ma, X. Wang, Z. Liu, H. W. Roesky, K. Sun, J. Li, M. Zhong, Dalton Trans., 2012, 41, 13520.CrossRefGoogle Scholar
  24. 24.
    Z. Yang, P. Hao, Z. Liu, X. Ma, H. W. Roesky, K. Sun, J. Li, Organometallics., 2012, 31, 6500.CrossRefGoogle Scholar
  25. 25.
    D. Franz, S. Inoue, Chem. Eur. J., 2014, 20, 10645.CrossRefGoogle Scholar
  26. 26.
    Z. Yang, M. Zhong, X. Ma, S. De, C. Anusha, P. Parameswaran, H. W. Roesky, Angew. Chem., Int. Ed., 2015, 54, 10225.CrossRefGoogle Scholar
  27. 27.
    A. V. Korolev, E. Ihara, I. A. Guzei, V. G. Young, Jr., R. F. Jordan, J. Am. Chem. Soc., 2001, 123, 8291.CrossRefGoogle Scholar
  28. 28.
    S. Dagorne, D. A. Atwood, Chem. Rev., 2008, 108, 4039.CrossRefGoogle Scholar
  29. 29.
    I. L. Fedushkin, A. S. Nikipelov, K. A. Lyssenko, J. Am. Chem. Soc., 2010, 132, 7874.CrossRefGoogle Scholar
  30. 30.
    I. L. Fedushkin, M. V. Moskalev, A. N. Lukoyanov, A. N. Tishkina, E. V. Baranov, G. A. Abakumov, Chem. Eur. J., 2012, 18, 11264.CrossRefGoogle Scholar
  31. 31.
    I. L. Fedushkin, M. V. Moskalev, E. V. Baranov, G. A. Abakumov, J. Organomet. Chem., 2013, 747, 235.CrossRefGoogle Scholar
  32. 32.
    I. L. Fedushkin, A. A. Skatova, V. A. Dodonov, V. A. Chudakova, N. L. Bazyakina, A. V. Piskunov, S. V. Demeshko, G. K. Fukin, Inorg. Chem., 2014, 53, 5159.CrossRefGoogle Scholar
  33. 33.
    I. L. Fedushkin, A. S. Nikipelov, A. A. Skatova, O. V. Maslova, A. N. Lukoyanov, G. K. Fukin, A. V. Cherkasov, Eur. J. Inorg. Chem., 2009, 3742.Google Scholar
  34. 34.
    I. L. Fedushkin, O. V. Kazarina, A. N. Lukoyanov, A. A. Skatova, N. L. Bazyakina, A. V. Cherkasov, E. Palamidis, Organometallics, 2015, 34, 1498.CrossRefGoogle Scholar
  35. 35.
    M. V. Moskalev, A. N. Lukoyanov, E. V. Baranov, I. L. Fedushkin, Dalton Trans., 2016, 45, 15872.CrossRefGoogle Scholar
  36. 36.
    V. A. Dodonov, A. A. Skatova, A. V. Cherkasov, I. L. Fedushkin, Russ. Chem. Bull., 2016, 65, 1171.CrossRefGoogle Scholar
  37. 37.
    I. L. Fedushkin, V. A. Dodonov, A. A. Skatova, V. G. Sokolov, A. V. Piskunov, G. K. Fukin, Chem. Eur. J., 2018, 24, 1877–1889.CrossRefGoogle Scholar
  38. 38.
    I. L. Fedushkin, A. S. Nikipelov, A. G. Morozov, A. A. Skatova, A. V. Cherkasov, G. A. Abakumov, Chem. Eur. J., 2012, 18, 255.CrossRefGoogle Scholar
  39. 39.
    I. L. Fedushkin, M. V. Moskalev, A. N. Lukoyanov, A. N. Tishkina, E. V. Baranov, G. A. Abakumov, Chem. Eur. J. 2012, 18, 11264.CrossRefGoogle Scholar
  40. 40.
    I. L. Fedushkin, V. G. Sokolov, A. V. Piskunov, V. M. Makarov, E. V. Baranov, G. A. Abakumov, Chem. Commun., 2014, 50, 10108–10111.CrossRefGoogle Scholar
  41. 41.
    I. L. Fedushkin, V. G. Sokolov, V. M. Makarov, A. V. Cherkasov, G. A. Abakumov, Russ. Chem. Bull., 2016, 65, 1495.CrossRefGoogle Scholar
  42. 42.
    V. G. Sokolov, T. S. Koptseva, M. V. Moskalev, A. V. Piskunov, M. A. Samsonov, I. L. Fedushkin, Russ. Chem. Bull., 2017, 66, 1569.CrossRefGoogle Scholar
  43. 43.
    R. Duchateau, A. Meetsma, J. H. Teuben, Chem. Commun., 1996, 223.Google Scholar
  44. 44.
    C. Chu, Y. Yang, H. Zhu, Sci. Chi. Chem., 2010, 53, 1970.CrossRefGoogle Scholar
  45. 45.
    V. G. Sokolov, T. S. Koptseva, M. V. Moskalev, N. L. Bazyakina, A. V. Piskunov, A. V. Cherkasov, I. L. Fedushkin, Inorg. Chem., 2017, 56, 13401.CrossRefGoogle Scholar
  46. 46.
    H. Schumann, M. Hummert, A. N. Lukoyanov, I. L. Fedushkin, Organometallics, 2005, 24, 3891.CrossRefGoogle Scholar
  47. 47.
    A. N. Lukoyanov, I. L. Fedushkin, H. Schumann, M. Hummert, Z. Anorg. Allg. Chem., 2006, 632, 1471.CrossRefGoogle Scholar
  48. 48.
    T. W. Myers, L. A. Berben, J. Am. Chem. Soc., 2013, 135, 9988.CrossRefGoogle Scholar
  49. 49.
    Y. Zhao, Y. Liu, B. Wu, X-J. Yang, Dalton Trans., 2015, 44, 13671.CrossRefGoogle Scholar
  50. 50.
    S. Stoll, A. Schweiger, J. Magnetic Resonance, 2006, 178, 42.CrossRefGoogle Scholar
  51. 51.
    CrysAlisPro, Empirical Absorption Correction Using Spherical Harmonics, Implemented in SCALE3 ABSPACK Scaling Algorithm, Rigaku Oxford Diffraction, UK, 2015.Google Scholar
  52. 52.
    BrukerSAINT Data Reduction and Correction Program v. 8.38A, Bruker AXS, Madison, Wisconsin, USA, 2017.Google Scholar
  53. 53.
    G. M. Sheldrick, SHELXL and SHELXT, Structure Solution and Refinement Software, 2015.Google Scholar
  54. 54.
    G. M. Sheldrick, SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2016.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. G. Sokolov
    • 1
  • T. S. Koptseva
    • 1
  • V. A. Dodonov
    • 1
  • R. V. Rumyantsev
    • 1
  • I. L. Fedushkin
    • 1
    Email author
  1. 1.G. A. Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussian Federation

Personalised recommendations