Skip to main content

Advertisement

Log in

Optimization of structural and energy characteristics of adsorbents for methane storage

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Using numerical and analytical methods, a model for microporous carbon adsorbents with slit-shaped pores of different widths was developed. Such pores are formed during activation procedure by the removal of the hexagonal carbon layers burnt out in a graphite-like crystallites. Dubinin’s theory of volume filling of micropores was used to calculate methane adsorption equilibria on these model adsorbents. Isobaric dependences of methane adsorption on pore width, specific micropore volumes, and the specific surface were plotted in the range of pressures from 1 to 10 MPa. It was found that the isobaric adsorption curves had a maximum the position of which depends on both the structural-energy characteristics of the adsorbent and thermodynamic conditions chosen to operate the adsorption system. As pressure increased, the maximum of adsorption shifts to the porous systems with wider pores and larger micropore volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Burchell, M. Rogers, SAE Tech. Pap. Ser., 2000, 2000-01-2205.

    Google Scholar 

  2. M. S. Balathanigaimani, H.-C. Kang, W.-G. Shim, C. Kim, J.-W. Lee, H. Moon, Korean J. Chem. Eng., 2006, 23,663.

    Article  CAS  Google Scholar 

  3. A. Policicchio, E. Maccallini, R. G. Agostino, F. Ciuchi, A. Aloise, G. Giordano, Fuel, 2013, 4,813.

    Article  CAS  Google Scholar 

  4. F. Yan-Yan, Y. Wen, C. Wei, Chin. Phys. B., 2014, 23, 108201-1–8.

    Article  CAS  Google Scholar 

  5. L. Giraldo, J. C. Moreno-Piraján, Mater. Sci. Appl., 2011, 2,331.

    CAS  Google Scholar 

  6. M. S. Balathanigaimani, W.-G. Shim, J.-W. Lee, H. Moon, Micropor. Mesopor. Mater., 2009, 119,47.

    Article  CAS  Google Scholar 

  7. R. B. M. Rios, F. W. Silva, A. E. B. Torres, D. C. S. Azevedo, Jr. C. L. Cavalcante, Adsorption, 2009, 15,271.

    Article  CAS  Google Scholar 

  8. I. E. Men´shchikov, A. A. Fomkin, A. Yu. Tsivadze, A. V. Shkolin, E. M. Strizhenov, E. V. Khozina, Adsorption, 2017, 23,327.

    Article  CAS  Google Scholar 

  9. A. A. Fomkin, Adsorption, 2005, 11,425.

    Article  CAS  Google Scholar 

  10. Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, T. Yildirim, J. Am. Chem. Soc., 2013, 135, 11887.

    Article  CAS  PubMed  Google Scholar 

  11. R. L. Martin, M. N. Shahrak, J. A. Swisher, C. M. Simon, J. P. Sculley, H. C. Zhou, B. Smit, M. Haranczyk, J. Phys. Chem. C, 2013, 117, 20037.

    Article  CAS  Google Scholar 

  12. H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 8875.

    Article  CAS  Google Scholar 

  13. J. L. Mendoza-Cortes, T. A. Pascal, W. A. Goddard, J. Phys. Chem. A, 2011, 115, 13852.

    Article  CAS  PubMed  Google Scholar 

  14. D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, D.F. Quinn, Carbon, 2002, 40,989.

    Article  CAS  Google Scholar 

  15. A. A. García Blancoa, J. C. Alexandre de Oliveira, R. López, J. C. Moreno-Piraján, L. Giraldo, G. Zgrablich, K. Sapag, Colloids Surf. A: Physicochem. Eng. Aspects, 2010, 357,74.

    Article  CAS  Google Scholar 

  16. A. Feaver, G. Cao, Lett. Ed. Carbon, 2006, 44,590.

    Article  CAS  Google Scholar 

  17. X. Shao, W. Wang, X. Zhang, Carbon, 2007, 45,188.

    Article  CAS  Google Scholar 

  18. A. Arami-Niya, W. M. A. W. Daud, F. S. Mjalli, F. Abnisa, M. S. Shafeeyan, Chem. Eng. Res. Des., 2012, 90,776.

    Article  CAS  Google Scholar 

  19. M. Bastos-Neto, D. V. Canabrava, A. E. B. Torres, E. Rodriguez-Castellon, A. Jimenez-Lopez, D. C. S. Azevedo, C. L. Cavalcante, Jr. Appl. Surf. Sci., 2007, 253, 5721.

    Article  CAS  Google Scholar 

  20. Y. Ihm, V. R. Cooper, N. C. Gallego, C. I. Contescu, J. R. Morris, J. Chem. Theory Comput., 2014, 10,1.

    Article  CAS  PubMed  Google Scholar 

  21. S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London–New York, 1982, 303 pp.

    Google Scholar 

  22. M. M. Dubinin, Prog. Surf.Memb.Sci., 1975, 9, 1–70.

    Article  CAS  Google Scholar 

  23. F. Rodríguez-Reinoso, C. Almansa, M. Molina-Sabio, J. Phys. Chem. B, 2005, 109, 20227.

    Article  CAS  PubMed  Google Scholar 

  24. H. Tanaka, M. El-Merraoui, W. A. Steele, K. Kaneko, Chem. Phys. Lett., 2002, 352,334.

    Article  CAS  Google Scholar 

  25. Z. Tan, K. E. Gubbins, J. Phys. Chem., 1990, 94, 6061.

    Article  CAS  Google Scholar 

  26. K. R. Matranga, A. L. Myers, E. D. Glandt, Chem. Eng. Sci., 1992, 47, 1569.

    Article  CAS  Google Scholar 

  27. S. M. P. Lucena, V. A. Gomes, D.V. Goncalves, P. G. M. Mileo, P.F.G. Silvino, Carbon, 2013, 61,624.

    Article  CAS  Google Scholar 

  28. P. Kowalczyk, H. Tanaka, K. Kaneko, A.P. Terzyk, D. D. Do, Langmuir, 2005, 21, 5639.

    Article  CAS  PubMed  Google Scholar 

  29. K. M. Anuchin, A. A. Fomkin, A. P. Korotych, A. M. Tolmachev, Prot. Met. Phys. Chem. Surf., 2014, 50,173.

    Article  CAS  Google Scholar 

  30. Z. Song, A. Nambo, K. L. Tate, A. Bao, M. Zhu, J. B. Jasinski, S. J. Zhou, H. S. Meyer, M. A. Carreon, S. Li, M. Yu, Nano Lett., 2016,16, 3309.

    Article  CAS  PubMed  Google Scholar 

  31. MOVE: Methane Opportunities for Vehicular Energy, Advanced Research Projects Agency–Energy, U.S. Department of Energy, Washington, DC, 2012;http://arpa-e.energy.gov/?q=arpa-eprograms/move (accessed Dec 2013).

  32. K. V. Kumar, K. Preuss, M. M. Titirici, F. Rodríguez-Reinoso, Chem. Rev., 2017, 117, 1796.

    Article  CAS  PubMed  Google Scholar 

  33. E. M. Strizhenov, A. V. Shkolin, A. A. Fomkin, A. A. Pribylov, A. A. Zherdev, I. A. Smirnov, Prot. Met. Phys. Chem. Surf. (Int. Ed.), 2013, 49,521.

    Article  CAS  Google Scholar 

  34. H. Wang, J. Getzschmann, I. Senkovska, S. Kaskel, Micropor. Mesopor. Mat., 2008, 116,653.

    Article  CAS  Google Scholar 

  35. I. Senkovska, S. Kaskel, Micropor. Mesopor. Mat., 2008, 112,108.

    Article  CAS  Google Scholar 

  36. M. M. Dubinin, G. M. Plavnik, Carbon, 1968, 6,183.

    Article  CAS  Google Scholar 

  37. P. B. Hirsch, Proc. Roy. Soc. A, 1954, 226,143.

    Article  CAS  Google Scholar 

  38. M. M. Dubinin, in Uglerodnye adsorbenty i ikh primenenie v promyshlennosti [Carbon Adsorbents and Their Industrial Application], Nauka, Moscow, 1983, p. 100 (in Russian).

    Google Scholar 

  39. G. M. Plavnik, M. M. Dubinin, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1966, 15,597.

    Article  Google Scholar 

  40. V. B. Fenelov, Poristyi uglerod [Porous Carbon], Institut Katalyza SB RAS, Novosibirsk, 1995, 518 pp. (in Russian).

    Google Scholar 

  41. I. A. Tarkovskaya, Okislenyi ugol´ [Oxidized Coal], Naukova dumka, Kiev, 1981, 200 pp. (in Russian).

    Google Scholar 

  42. B. K. Vainshtein, V. M. Fridkin, V. L. Indenbom, in Modern Crystallography, Eds B. K. Vainshtein, A. A. Chernov, L. A. Shuvalov, Springer-Verlag, Berlin, 1995, p.82.

  43. J. C. Slater, J. Chem. Phys., 1964, 41, 3199.

    Article  CAS  Google Scholar 

  44. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem., 2015, 87, 1051.

    Article  CAS  Google Scholar 

  45. I. E. Men´shchikov, A. A. Fomkin, A. Yu. Tsivadze, A. V. Shkolin, E. M. Strizhenov, A. L. Pulin, Prot. Met. Phys. Chem. Surf., 2015, 51,493.

    Article  CAS  Google Scholar 

  46. J. Alcaniz-Monge, D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, Micropor. Mesopor. Mat., 2009, 124,110.

    Article  CAS  Google Scholar 

  47. A. A. Fomkin, A. Yu. Tsivadze, A. V. Shkolin, I. E. Men´-shchikov, A. L. Pulin, Prot. Met. Phys. Chem. Surf., 2016, 52,762.

    Article  CAS  Google Scholar 

  48. A. V. Shkolin, A. A. Fomkin, A. Yu. Tsivadze, K. M. Anuchin, I. E. Men´shchikov, A. L. Pulin, Prot. Met. Phys. Chem. Surf., 2016, 52,955.

    Article  CAS  Google Scholar 

  49. E. M. Strizhenov, A. A. Fomkin, A. A. Zherdev, A.A. Pribylov, Prot. Met. Phys. Chem. Surf., 2012, 48,614.

    Article  CAS  Google Scholar 

  50. A. V. Shkolin, A. A. Fomkin, V. A. Sinitsyn, Colloid J., 2008, 70, 796.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Men’shchikov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1814–1822, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V. et al. Optimization of structural and energy characteristics of adsorbents for methane storage. Russ Chem Bull 67, 1814–1822 (2018). https://doi.org/10.1007/s11172-018-2294-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2294-1

Key words

Navigation