Skip to main content
Log in

Liquid-phase oxidation of cyclohexane. Elementary steps in the developed process, reactivity, catalysis, and problems of conversion and selectivity

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The literature data concerning features of the kinetics and mechanisms of elementary steps of liquid-phase oxidation of cyclohexane and its oxygen derivatives are considered and analyzed. A comparison of rates of intermolecular and intramolecular reactions of cyclohexylperoxyl radicals under the industrial conditions indicated a necessity to take into account intramolecular interactions. The occurrence of cross recombination of hydroperoxyl and α-hydroxyperoxyl radicals without chain termination in the course of cyclohexanol and 2-hydroxycyclohexanol oxidation was proved. A significance of degenerate branching reactions involving cyclohexyl hydroperoxide in the industrial process of cyclohexane oxidation at 423 K was evaluated. The influence of the electron-withdrawing functional groups on the reactivity of carbon–hydrogen bonds of organic compounds in the reactions with electrophilic peroxyl radicals was studied. The low conversion of a substrate in the industrial process are mainly caused by the radicalchain oxidation of cyclohexanone leading only to by-products. The catalysts of cyclohexane oxidation, viz., compounds of variable valence metals, affect the reaction rate and ratio of the yields of the target products (cyclohexyl hydroperoxide, cyclohexanol, and cyclohexanone) but exert no effect on their relative reactivity. The use of the catalytic additives increasing the yield of cyclohexanone in the step of cyclohexane oxidation in the production of caprolactam is revealed to be inexpedient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Berezin, E. T. Denisov, N. M. Emanuel, The Oxidation of Cyclohexane, Elsevier, Oxford–London–Edinburgh–New York–Ontario, 1966, 304 pp.

    Google Scholar 

  2. R. A. Sheldon, G. Franz, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012, 25, p.543.

    Google Scholar 

  3. E. T. Denisov, N. I. Mitskevich, V. E. Agabekov, Liquid-Phase Oxidation of Oxygen-Containing Compounds, Consultants Bureau, New York, 1977, 355 pp.

    Book  Google Scholar 

  4. N. M. Emanuel, G. E. Zaikov, Z. K. Maizus, Oxidation of Organic Compounds: Medium Effects in Radical Reactions, Pergamon Press, Oxford–New York–Toronto–Sydney–Paris–Frankfurt, 2013, 628 pp.

    Google Scholar 

  5. E. T. Denisov, I. B. Afanas´ev, Oxidation and Antioxidants in Organic Chemistry and Biology, Taylor and Francis Group, Boca Raton–London–New York–Singapore, 2005, 981 pp.

    Book  Google Scholar 

  6. A. L. Perkel, S. G. Voronina, B. G. Freidin, Russ. Chem. Rev., 1994, 63,751.

    Article  Google Scholar 

  7. A. L. Perkel, S. G. Voronina, E. I. Buneeva, in Peroxides at the Beginning of the Third Millennium. Synthesis, Properties, Application, Eds V. L. Antonovsky, O. T. Kasaikina, G. E. Zaikov, Nova Science Publishers, New York, 2004, p.201.

  8. A. L. Perkel, S. G. Voronina, G. G. Borkina, Russ. Chem. Bull., 2018, 67,779.

    Article  CAS  Google Scholar 

  9. A. L. Perkel, S. G. Voronina, Russ. Chem. Bull., 2018, 67, 1321.

    Article  CAS  Google Scholar 

  10. M. Conte, X. Liu, D. M. Murphy, S. H. Taylor, K. Whiston, G. J. Hutchingsa, Catal. Lett., 2016, 146,126.

    Article  CAS  Google Scholar 

  11. T. Wang, Y. She, H. Fu, H. Li, Catal. Today, 2016, 264,185.

    Article  CAS  Google Scholar 

  12. D. Yang, T. Wu, C. Chen, W. Guo, H. Liu, B. Han, Green Chem., 2017, 19, 311; doi: 10.1039/C6GC02748B.

    Article  CAS  Google Scholar 

  13. Y. Xiao, J. Liu, K. Xie, W. Wang, Y. Fang, Mol. Catal., 2017, 431, 1; doi: org/10.1016/j.mcat.2017.01.020.

    Article  CAS  Google Scholar 

  14. A. A. Alshaheri, M. I. M. Tahir, M. B. A. Rahman, Th. B. S. A. Ravoof, T. A. Saleh, Chem. Eng. J., 2017, 327,423.

    Article  CAS  Google Scholar 

  15. S. V. Puchkov, A. L. Perkel, E. I. Buneeva, Kinet. Catal., 2001, 42,751.

    Article  CAS  Google Scholar 

  16. S. V. Puchkov, E. I. Buneeva, A. L. Perkel, Russ. J. Appl. Chem., 2002, 75,248.

    Article  CAS  Google Scholar 

  17. S. V. Puchkov, E. I. Buneeva, A. L. Perkel, Kinet. Catal., 2002, 43,756.

    Article  CAS  Google Scholar 

  18. S. V. Puchkov, Yu. V. Nepomnyashchikh, E. S. Kozlova, A. L. Perkel, Kinet. Catal., 2013, 54,139.

    Article  CAS  Google Scholar 

  19. B. Sirjean, P. A. Glaude, M. F. Ruiz-Lopez, R. Fournet, J. Phys. Chem. A., 2009, 113, 6924; doi: 10.1021/jp901492e.

    Article  CAS  PubMed  Google Scholar 

  20. Z. Serinyel, O. Herbinet, O. Frottier, P. Dirrenberger, V. Warth, P.-A. Glaude, F. Battin-Leclerc, Combustion and Flame, 2013, 160, 2319; doi: org/10.1016/j.combustflame. 2013.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. F. Buda, B. Heyberger, R. Fournet, P.-A. Glaude, V. Warth, F. Battin-Leclerc, Energy and Fuels, 2006, 20, 1450; doi: 10.1021/ef060090e.

    Article  CAS  Google Scholar 

  22. S. V. Puchkov, E. G. Moskvitina, I. M. Borisov, A. L. Perkel, Kinet. Catal., 2012, 53,287.

    Article  CAS  Google Scholar 

  23. A. A. Akimov, S. V. Puchkov, Yu. V. Nepomnyashchikh, A. L. Perkel, Kinet. Catal., 2013, 54,270.

    Article  CAS  Google Scholar 

  24. S. V. Puchkov, E. G. Moskvitina, Yu. V. Nepomnyashchikh, A. L. Perkel, Russ. J. Phys. Chem., 2013, 87,737.

    Article  CAS  Google Scholar 

  25. E. G. Moskvitina, S. V. Puchkov, I. M. Borisov, A. L. Perkel, Kinet. Catal., 2013, 54,538.

    Article  CAS  Google Scholar 

  26. E. G. Moskvitina, S. V. Puchkov, I. M. Borisov, A. L. Perkel, Kinet. Catal., 2014, 55,22.

    Article  CAS  Google Scholar 

  27. I. Hermans, T. L. Nguyen, P. A. Jacobs, J. Peeters, ChemPhysChem., 2005, 6,637.

    Article  CAS  PubMed  Google Scholar 

  28. I. Hermans, P. A. Jacobs, J. Peeters, Chem. A Eur. J., 2006, 12, 4229.

    Article  CAS  Google Scholar 

  29. I. Hermans, P. Jacobs, J. Peeters, Chem. A Eur. J., 2007, 13,754.

    Article  CAS  Google Scholar 

  30. I. Hermans, J. Peeters, P. A. Jacobs, J. Phys. Chem. A, 2008, 112, 1747.

    Article  CAS  PubMed  Google Scholar 

  31. Yu. V. Nepomnyashchikh, I. M. Nosacheva, A. L. Perkel, Kinet. Catal., 2004, 45,768.

    Article  CAS  Google Scholar 

  32. I. M. Nosacheva, S. G. Voronina, A. L. Perkel, Kinet. Catal., 2004, 45,762.

    Article  CAS  Google Scholar 

  33. S. V. Puchkov, E. I. Buneeva, A. L. Perkel, Kinet. Catal., 2005, 46,340.

    Article  CAS  Google Scholar 

  34. T. S. Kotel´nikova, S. G. Voronina, A. L. Perkel, Russ. J. Appl. Chem., 2006, 79,416.

    Article  CAS  Google Scholar 

  35. M. T. Lisovska, V. I. Timokhin, A. P. Pokutsa, V. I. Kopylets, Kinet. Catal., 2000, 41,201.

    Article  CAS  Google Scholar 

  36. E. A. Martynenko, I. L. Glazko, S. V. Levanova, Russ. Chem. Bull., 2016, 65, 2513; doi: 10.1007/s11172-016-1616-4.

    Article  CAS  Google Scholar 

  37. E. T. Denisov, T. G. Denisova, Russ. Chem. Rev., 2002, 71,417.

    Article  CAS  Google Scholar 

  38. A. Miyoshi, J. Phys. Chem. A, 2011, 115, 3301; doi: 10.1021/jp112152n.

    Article  CAS  PubMed  Google Scholar 

  39. E. T. Denisov, Russ. Chem. Bull., 2013, 62, 1533.

    Article  CAS  Google Scholar 

  40. J. Pfaendtner, X. Yu, L. J. Broadbelt, J. Phys. Chem. A, 2006, 110, 10863; doi: 10.1021/jp061649e.

    Article  CAS  PubMed  Google Scholar 

  41. S. L. Khursan, Organic Tetroxides and Mechanism of Peroxy Radical Recombination, Willy, Chichester, 2014; doi: 10.1002/9780470682531.pat0827.

    Book  Google Scholar 

  42. S. L. Khursan, V. S. Martem´yanov, E. T. Denisov, Kinet. Catal., 1990, 31,899.

    Google Scholar 

  43. Yu. V. Nepomnyashchikh, S. V. Puchkov, O. V. Abdulova, A. L. Perkel, Kinet. Catal., 2009, 50,609.

    Article  CAS  Google Scholar 

  44. Q. Zhao, F. Liu, W. Wang, Ch. Li, J. Lü, W. Wang, Phys. Chem. Chem. Phys., 2017, 19, 15073; doi: 10.1039/C7CP00869D.

    Article  CAS  PubMed  Google Scholar 

  45. B. Long, X. F. Tan, J. L. Bao, D.-M. Wang, Zh.-W. Long, Int. J. Chem. Kinet., 2017, 49, 130; doi: org/10.1002/kin.21062.

    Article  CAS  Google Scholar 

  46. F. A. F. Winiberg, T. J. Dillon, S. C. Orr, Ch. B. V. Groβ, I. Bejan, Ch. A. Brumby, M. J. Evans, Sh. C. Smith, D. E. Heard, P. W. Seakins, Atmospheric Chemistry and Physics, 2016, 16, 4023; doi: 10.5194/acp-16-4023-2016.

    Article  CAS  Google Scholar 

  47. A. L. Perkel, G. M. Bogomolnyi, R. V. Neginskaya, B. G. Freidin, J. Appl. Chem. USSR, 1987, 60, 1493.

    Google Scholar 

  48. B. G. Freidin, A. L. Perkel, J. Appl. Chem. USSR, 1980, 53, 1257.

    Google Scholar 

  49. V. V. Lipes, Author´s Abstract, Doct. Sci. (Chem.) Thesis, Institute of Chemical Physics, Academy of Sciences of the USSR, Chernogolovka, 1987, 35 pp. (in Russian).

    Google Scholar 

  50. T. V. Kharkova, I. L. Arest-Yakubovich, V. V. Lipes, F. A. Geberger, Kinet. Catal., 1989, 30,954.

    CAS  Google Scholar 

  51. Landolt-Bórnstein. Numerical Data and Functional Relationships in Science and Technology. New Series, Ed. H. Fischer, Group II: Atomic and Molecular Physics, V. 13, Radical Reaction Rates in Liquids, Springer-Verlag, Berlin, 1984, 431 pp.

  52. Landolt-Bórnstein. Numerical Data and Functional Relationships in Science and Technology. New Series, Ed. H. Fischer, Group II: Molecules and Radicals, V. 18, Radical Reaction Rates in Liquids, Springer-Verlag, Berlin, 1997, 434 pp.

  53. R. V. Kucher, V. I. Timokhin, N. A. Kravchuk, Dokl. Chem., 1987, 294, 1411.

    CAS  Google Scholar 

  54. Yu. V. Nepomnyashchikh, S. V. Puchkov, O. V. Arnatskaya, E. G. Moskvitina, I. M. Borisov, A. L. Perkel, Polzunovskii Vestn. [Polzunov Bulletin], 2011, No. 4–1, 48 (in Russian).

    Google Scholar 

  55. D. G. Hendry, C. W. Gould, D. Schuetzle, M. G. Syz, F. R. Mayo, J. Org. Chem., 1976, 41,1.

    Article  CAS  Google Scholar 

  56. T. S. Kotel´nikova, S. G. Voronina, S. V. Puchkov, A. L. Perkel, Vestn. KuzGTU [Bulletin of Kuzbass State Technical University], 2013, 5, 4 (in Russian).

    Google Scholar 

  57. L. A. Tavadyan, V. A. Mardoyan, M. V. Musaelyan, Int. J. Chem. Kinet., 1996, 28,555.

    Article  CAS  Google Scholar 

  58. S. V. Puchkov, Yu. V. Nepomnyashchikh, E. S. Kozlova, A. L. Perkel, Polzunovskii Vestn. [Polzunov Bulletin], 2013, No. 1, 190 (in Russian).

    Google Scholar 

  59. A. A. Akimov, A. L. Perkel, Polzunovskii Vestn. [Polzunov Bulletin], 2009, No. 3, 63 (in Russian).

    Google Scholar 

  60. G. G. Borkina, Yu. V. Nepomnyashchikh, A. L. Perkel, Vestn. KuzGTU [Bulletin of Kuzbass State Technical University], 2012, 6, 89 (in Russian).

    Google Scholar 

  61. A. L. Perkel, S. G. Voronina, Russ. J. Appl. Chem., 1999, 72, 1487.

    Google Scholar 

  62. L. I. Matienko, L. A. Mosolova, G. E. Zaikov, Russ. Chem. Rev., 2009, 78,211.

    Article  CAS  Google Scholar 

  63. Author´s Certificate 639855 USSR; Byul. Izobret. [Invention Bulletin], 1978, 48 (in Russian).

  64. B. G. Freidin, A. L. Perkel, J. Appl. Chem. USSR, 1981, 54, 2418.

    Google Scholar 

  65. T. S. Kotel´nikova, O. A. Revkov, S. G. Voronina, A. L. Perkel, Russ. J. Appl. Chem., 2009, 82,287.

    Article  CAS  Google Scholar 

  66. T. S. Kotel´nikova, O. A. Revkov, S. G. Voronina, A. L. Perkel, Russ. J. Appl. Chem., 2009, 82,466.

    Article  CAS  Google Scholar 

  67. A. L. Perkel, B. G. Freidin, O. V. Borodina, J. Appl. Chem. USSR, 1985, 58, 2483.

    Google Scholar 

  68. E. A. Kurganova, V. N. Sapunov, G. N. Koshel, A. S. Frolov, Russ. Chem. Bull., 2016, 65, 2115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Perkel.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1747–1758, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perkel, A.L., Voronina, S.G. & Borkina, G.G. Liquid-phase oxidation of cyclohexane. Elementary steps in the developed process, reactivity, catalysis, and problems of conversion and selectivity. Russ Chem Bull 67, 1747–1758 (2018). https://doi.org/10.1007/s11172-018-2288-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2288-z

Key words

Navigation