Skip to main content
Log in

Effect of the hyaluronidase microe nvironment on the enzyme structure–function relationship and computational study of the in silico molecular docking of chondroitin sulfate and heparin short fragments to hyaluronidase

  • Review
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The review addresses the biochemical interactions of hyaluronidases with components of the natural microenvironment. The effect of subtle structural differences between ligands on the enzyme structure–function relationship regulation is noted. Docking of chondroitin sulfate (CS) trimers (hexasaccharides) and heparin tetramers (octasaccharides) to the 3D model of the bovine testicular hyaluronidase (BTH) was performed by computational chemistry methods in order to elucidate the mechanism of regulation of the enzyme functioning in the body (using virtual screening, molecular dynamics, and calculation of surface electrostatic potential of protein complexes). Several binding sites for glycosaminoglycan (GAG) ligands were found to occur on the hyaluronidase surface. They are identical for CS trimers and heparin tetramers. The calculations showed the possibility of both reversible and irreversible conformational changes of the 3D structure of BTH, depending on the arrangement of negatively charged ligands on its globule. When the changes are irreversible, Glu-149 and Asp-147, which are key amino acid residues for the catalytic activity of BTH, can migrate from the vicinity of the native enzyme active site to the periphery of the protein molecule, thus inducing enzyme inactivation. The interaction of the GAG ligands with the BTH active site is mainly caused by electrostatic forces. Four or five binding sites of the chondroitin sulfate trimer proved to be critical for stabilization of the enzyme structure. Their occupation was sufficient for preventing irreversible deformation of the BTH molecule upon the insertion of the heparin ligand into the active site cavity. Protein stabilization is accompanied by the formation of a particular form of the surface electrostatic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. C. Grant, M. B. Tessier, L. Meche, L. K. Mahal, B. L. Foley, R. J. Woods, Glycobiology, 2016, 26, 772; DOI: 10.1093/glycob/cww020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Agostino, N. S. Gandhi, R. L. Mancera, Glycobiology, 2014, 24,840.

    Article  CAS  PubMed  Google Scholar 

  3. N. V. Sankaranarayanan, U. R. Desai, Glycobiology, 2014, 24, 1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Jayakanthan, R. Jubendradass, S. C. D´Cruz, P. P. Mathur, Methods Mol. Biol., 2015, 1268,273.

    Article  CAS  PubMed  Google Scholar 

  5. A. Maksimenko, A. Turashev, A. Fedorovich, A. Rogoza, E. Tischenko, J. Life Sci., 2013, 7,171.

    CAS  Google Scholar 

  6. A. V. Maksimenko, A. D. Turashev, R. S. Beabealashvili, Biochemistry (Moscow), 2015, 80,284.

    Article  CAS  Google Scholar 

  7. K. L. Chao, L. Muthukumar, O. Herzberg, Biochemistry, 2007, 46, 6911.

    Article  CAS  PubMed  Google Scholar 

  8. K. S. Girish, K. Kemparaju, Biochemistry (Moscow), 2005, 70,948.

    Article  CAS  Google Scholar 

  9. T. Honda, T. Kaneiwa, S. Mizumoto, K. Sugahara, S. Yamada, Biomolecules, 2012, 2,549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. F. Zhang, B. Walcott, D. Zhou, A. Gustchina, Y. Lasanajak, D. F. Smith, R. S. Fereira, M. T. S. Correia, P. M. G. Paiva, N. V. Bovin, A. Wlodawer, M. L. V. Oliva, R. J. Linhardt, Biochemistry, 2013, 52, 2148.

    Article  CAS  PubMed  Google Scholar 

  11. V. K. Yadav, R. S. Mandal, B. L. Puniya, R. Kumar, S. Day, S. Singh, S. Yadav, Chem. Biol., Drug Des., 2015, 85,404.

    Article  CAS  Google Scholar 

  12. N. S. Gandhi, C. Freeman, C. R. Parish, R. L. Mancera, Glycobiology, 2012, 22,35.

    Article  CAS  PubMed  Google Scholar 

  13. G. Jug, M. Anderluh, T. Tomasic, J. Mol. Model., 2015, 21, 164; DOI: 10.1007/s00894-015-2713-2.

    Article  CAS  PubMed  Google Scholar 

  14. S. A. Samsonov, Y. Teyra, M. T. Pisabarro, J. Comput. Aided Mol. Des., 2011, 25,477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S. A. Samsonov, M. T. Pisabarro, Glycobiology, 2016, 26,850.

    Article  CAS  PubMed  Google Scholar 

  16. L. Ballut, N. Sapay, E. Chautard, A. Imberty, S. Ricard-Blum, J. Mol. Recognit., 2013, 26,76.

    Article  CAS  PubMed  Google Scholar 

  17. Y. Tatara, I. Kakizaki, S. Suto, H. Ishioka, M. Negishi, M. Endo, Glycobiology, 2015, 25, 557; DOI: 10.1093/glycob/ cwu186.

    Article  CAS  PubMed  Google Scholar 

  18. A. V. Maksimenko, Khim.-Farm. Zh. [Chem. Pharm. J.], 2008, 42, No. 10, 3 (in Russian).

    Google Scholar 

  19. A. V. Maksimenko, R. Sh. Beabealashvili, Kardiol. Vestnik [Bull. Cardiol.], 2016, XI, 70 (in Russian).

    Google Scholar 

  20. S. Batool, S. Ferdous, M. A. Kamal, H. Iftikhar, S. Rashid, Enz. Eng., 2013, 2, 1; DOI: 10.4172/eeg.1000106.

    Google Scholar 

  21. A. V. Maksimenko, Russ. Chem. Bull. (Int. Ed.), 2015, 64, 2036.

    Article  CAS  Google Scholar 

  22. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem., 2004, 25, 1605.

    Article  CAS  PubMed  Google Scholar 

  23. M. F. Sanner, A. J. Olson, J. C. Spehner, Biopolymers, 1996, 38,305.

    Article  CAS  PubMed  Google Scholar 

  24. P. T. Lang, S. R. Brozell, S. Mukherjee, E. F. Pettersen, E. C. Meng, V. Thomas, R. C. Rizzo, D. A. Case, T. L. James, I. D. Kuntz, RNA, 2009, 15, 1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T. J. Dolinsky, P. Czodrowski, H. Li, J. E. Nielsen, J. H. Jensen, G. Klebe, N. A. Baker, Nucleic Acids Res., 2007, 35, W522.

    Article  PubMed  PubMed Central  Google Scholar 

  26. T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, N. A. Baker, Nucleic Acids Res., 2004, 32, W665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. N. A. Baker, D. Sept, S. Joseph, M. J. Holst, J. A. McCammon, Proc. Natl. Acad. Sci. USA, 2001, 98, 10037.

    Article  CAS  PubMed  Google Scholar 

  28. B. Honig, A. Nicholls, Science, 1995, 268, 1144.

    Article  CAS  PubMed  Google Scholar 

  29. A. Nicholls, K. Sharp, B. Honig, Proteins, 1991, 11,281.

    Article  CAS  PubMed  Google Scholar 

  30. I. Klapper, R. Hagstrom, R. Fine, B. Honig, Proteins, 1986, 1,47.

    Article  CAS  PubMed  Google Scholar 

  31. N. Guex, M. C. Peitsch, Electrophoresis, 1997, 18, 2714.

    Article  CAS  PubMed  Google Scholar 

  32. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, J. Comput. Chem., 2005, 26, 1781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R. Concu, G. Podda, E. Uriarte, H. Gonzalez-Diaz, J. Comp. Chem., 2009, 30, 1510.

    Article  CAS  Google Scholar 

  34. J. Batra, H. Tjong, H.-X. Zhou, Prot. Eng. Des. Sel., 2016, 29,301.

    Article  CAS  Google Scholar 

  35. S. Sakkiah, M. Arooj, M. R. Kumar, S. H. Eom, K. W. Lee, PLoS One, 2013, 8, e51429; DOI: 10.1371/journal. pone.0051429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. B. Wang, L. Li, T. D. Hurley, S.O. Meroneh, J. Chem. Inf. Model., 2013, 53, 2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maksimenko.

Additional information

Dedicated to the memory of Academician of the Russian Academy of Sciences N. S. Zefirov.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 0636–0646, April, 2018.

Based on materials of the III Interdisciplinary Symposium on Medicinal, Organic, and Biological Chemistry and Pharmaceutics (MOBI-KhimFarma 2017; May 28–31, 2017; Sevastopol, Russia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimenko, A.V., Beabealashvili, R.S. Effect of the hyaluronidase microe nvironment on the enzyme structure–function relationship and computational study of the in silico molecular docking of chondroitin sulfate and heparin short fragments to hyaluronidase. Russ Chem Bull 67, 636–646 (2018). https://doi.org/10.1007/s11172-018-2117-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2117-4

Key words

Navigation