Skip to main content
Log in

Mesoporous SiO2 produced by mineralization of yeast cells as an efficient electrocatalyst for oxygen reduction reaction

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Mes oporous SiO2 (yeast-SiO2/C) was successfully prepared by mineralization of yeast cell template under different pH values. Analysis of the nitrogen adsorption-desorption isotherms indicated that the pore size distribution of the mesoporous yeast-SiO2 samples significantly varies depending on the pH value used f or biomineralization. Average pore diameters for the samples synthesized at pH 5.0, 7.0, and 11.0 were found to be 7.9, 17.8, and 9.4 nm, respectively. The mineralization ability of silicon ions can be enhanced using conditions with a higher acidity. The air electrodes fabricated using the yeast-SiO2 mesoporous composites exhibited remarkable electrocatalytic activity in oxygen reduction reaction under alkaline conditions. The mesoporous sample synthesized at pH 5.0 showed the highest electrocatalytic performance in the oxygen reduction reaction; this sample has the largest surface area and the highest total pore volume. It is supposed that the mesoporous structure of the nanocomposites predetermined by the yeast cell template significantly reduced the electrochemical polarization and improved mass transport in the air diffusion electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sopian, W. R. W. Daud, Renew. Energy, 2006, 31, 719.

    Article  CAS  Google Scholar 

  2. N. Ominde, N. Bartlett, X. Q. Yang, D. Y. Qu, J. Power Sources, 2008, 185, 747.

    Article  CAS  Google Scholar 

  3. F. Bidault, D. J. L. Brett, P. H. Middleton, N. P. Brandon, J. Power Sources, 2009, 187, 39.

    Article  CAS  Google Scholar 

  4. H. F. Lv, D. G. Li, D. Strmcnik, A. P. Paulikas, N. M. Markovic, V. R. Stamenkovic, Nano Energy, 2016, 29, 149.

    Article  CAS  Google Scholar 

  5. L. Jörissen, J. Power Sources, 2006, 155, 23.

    Article  Google Scholar 

  6. Z. Z. Yuan, H. Wang, L. Wang, J. Y. Guan, X. Xiao, Chin. J. Catal., 2008, 29, 473.

    CAS  Google Scholar 

  7. N. A. Yashtulov, A. A. Revina, V. R. Flid, Russ. Chem. Bull., 2010, 59, 1488.

    Article  CAS  Google Scholar 

  8. Y. Tsivadze, M. R. Tarasevich, E. A. Maleeva, V. E. Baulin, I. P. Kalashnikova, Russ. Chem. Bull., 2015, 64, 2386.

    Article  CAS  Google Scholar 

  9. Z. J. Wang, Q. X. Zhang, D. Kuehner, X. Y. Xu, A. Ivaska, L. Niu, Carbon, 2008, 46, 1687.

    Article  CAS  Google Scholar 

  10. F. Xie, J. J. Hu, C. C. Jin, Q. Wang, J. Exp. Nanosci., 2013, 8, 825.

    Article  Google Scholar 

  11. R. S. Hsu, D. Higgins, Z. X. Chen, Nanotechnology, 2010, 21, 165705.

    Article  Google Scholar 

  12. N. A. Yashtulov, V. O. Zenchenko, M. V. Lebedeva, V. M. Samoilov, O. Kh. Karimov, V. R. Flid, Russ. Chem. Bull., 2016, 65, 133.

    Article  CAS  Google Scholar 

  13. H. T. Liu, P. He, Z. Y. Li, J. H. Li, Nanotechnology, 2006, 17, 2167.

    Article  CAS  Google Scholar 

  14. Z. Y. Wang, Q. S. Lu, P. Y. Wang, J. G. Li, J. Exp. Nanosci., 2011, 6, 528.

    Article  CAS  Google Scholar 

  15. S. B. Yoon, B. S. Choi, K.-W. Lee, J. K. Moon, Y. S. Choi, J.-Y. Kim, H. Cho, J. H. Kim, M.-S. Kim, J.-S. Yu, J. Exp. Nanosci., 2014, 9, 221.

    Article  CAS  Google Scholar 

  16. X. Y. Du, W. He, X. D. Zhang, Y. Z. Yue, H. Liu, X. G. Zhang, D. D. Min, X. X. Ge, Y. Du, J. Mater. Chem., 2012, 22, 5960.

    Article  CAS  Google Scholar 

  17. W. He, J. J. Cui, Y. Z. Yue, X. D. Zhang, X. Xia, H. Liu, S. W. Liu, J. Colloid Interface Sci., 2011, 354, 109.

    Article  CAS  Google Scholar 

  18. J. J. Cui, W. He, H. T. Liu, S. J. Liao, Y. Z. Yue, Colloids Surf., B, 2009, 74, 274.

    Article  CAS  Google Scholar 

  19. W. He, S. P. Yan, Y. J. Wang, X. D. Zhang, W. J. Zhou, X. Y. Tian, X. N. Sun, X. X. Han, J. Alloys Compd., 2009, 477, 657.

    Article  CAS  Google Scholar 

  20. X. Y. Tian, W. He, J. J. Cui, X. D. Zhang, W. J. Zhou, S. P. Yan, X. X. Han, S.S. Han, Y. Z. Yue, J. Colloid Interface Sci., 2010, 343, 344.

    Article  CAS  Google Scholar 

  21. W. He, Z. M. Li, Y. J. Wang, X. F. Chen, X. D. Zhang, H. S. Zhao, S. P. Yan, W. J. Zhou, J. Mater. Sci.: Mater. Med., 2010, 21, 155.

    CAS  Google Scholar 

  22. W. He, M. M. Zhang, X. D. Zhan, J. J. Cui, Y. Z. Yue, Res. Chem. Intermed., 2011, 37, 309.

    Article  CAS  Google Scholar 

  23. L. Osmieri, A. H. A. M. Videla, M. Armandi, S. Specchia, Int. J. Hydrogen Energy, 2016, 41, 22570.

    Article  CAS  Google Scholar 

  24. Y. L. Liu, C. X. Shi, X. Y. Xu, P. C. Sun, T. H. Chen, J. Power Sources, 2015, 283, 389.

    Article  CAS  Google Scholar 

  25. G. Mul, A. Zwijnenburg, B. Linden, M. Makkee, J. A. Moulijn, J. Catal., 2001, 201, 128.

    Article  CAS  Google Scholar 

  26. R. R. Xu, W. Q. Pang, J. H. Yu, Q. S. Huo, J. S. Chen, Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, J. Wiley and Sons (Asia), Singapore, 616 pp. [transl. from R. R. Xu, W. Q. Pang, J. H. Yu, Q. S. Huo, J. S. Chen, Chemistry of Zeolites and Porous Materials, Science Press, Beijing, 2004, 146 pp.].

  27. E. Cabib, D. H. Roh, M. Schmidt, L. B. Crotti, A. Varma, J. Biol. Chem., 2001, 276, 19679.

    Article  CAS  Google Scholar 

  28. P. F. F. Amaral, M. Lehocky, A. M. V. Barros-Timmons, M. H. M. Rocha-Leão, M. A. Z. Coelho, J. A. P. Coutinho, Yeast, 2006, 23, 867.

    Article  CAS  Google Scholar 

  29. C. Z. Zhang, F. R. F. Fan, A. J. Bard, J. Am. Chem. Soc., 2009, 131, 177.

    Article  CAS  Google Scholar 

  30. S. X. Zhuang, K. L. Huang, C. H. Huang, H. X. Huang, S. Q. Liu, M. Fan, J. Power Sources, 2011, 196, 4019.

    Article  CAS  Google Scholar 

  31. J. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed., 2012, 51, 3892.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjie Cui.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 0969—0974, June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Liu, H. Mesoporous SiO2 produced by mineralization of yeast cells as an efficient electrocatalyst for oxygen reduction reaction. Russ Chem Bull 66, 969–974 (2017). https://doi.org/10.1007/s11172-017-1840-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-017-1840-6

Key words

Navigation