Advertisement

Russian Chemical Bulletin

, Volume 65, Issue 4, pp 1131–1138 | Cite as

Prediction of solubility of some statin drugs in supercritical carbon dioxide using classification and regression tree analysis and adaptive neuro-fuzzy inference systems

  • K. Zarei
  • F. Taheri
Full Articles
  • 36 Downloads

Abstract

A quantitative structure-solubility relationship was developed to predict the solubility of some statin drugs in supercritical carbon dioxide (SC-CO2). The solubility of lovastatin, simvastatin, atorvastatin, rosuvastatin, and flovastatin in SC-CO2 at 225 different states of temperature and pressure were predicted. Classification and regression tree (CART) was successfully used as a descriptor selection method. Three descriptors (pressure, temperature, and molecular weight) were selected and used as inputs for adaptive neuro-fuzzy inference system (ANFIS). The root mean square errors for the calibration, prediction, and validation sets were 0.09, 0.14, and 0.11, respectively. In comparison with other methods, CART-ANFIS is a powerful model for prediction of solubilities of these statins in SC-CO2.

Keywords

classification and regression tree CART adaptive neuro-fuzzy inference system ANFIS statins solubility supercritical carbon dioxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Subramaniam, R. Rajewski, K. Snavely, J. Pharm. Sci., 1997, 86, 885.CrossRefGoogle Scholar
  2. 2.
    J. Jung, M. Perrut, J. Supercrit. Fluids, 2001, 20, 179.CrossRefGoogle Scholar
  3. 3.
    P. Coimbra, C. M. M. Duarte, H. C. De Sousa, Fluid Phase Equilib., 2006, 239, 188.CrossRefGoogle Scholar
  4. 4.
    J. Fages, H. Lochard, J. J. Letourneau, M. Sauceau, E. Rodier, Powder Technol., 2004, 141, 219.CrossRefGoogle Scholar
  5. 5.
    P. J. Ginty, M. J. Whitaker, K. M. Shakesheff, S. M. Howdle, Mater. Today, 2005, 8, 42.CrossRefGoogle Scholar
  6. 6.
    F. P. Lucien, N. R. Foster, J. Supcrit. Fluids, 2000, 17, 111.CrossRefGoogle Scholar
  7. 7.
    P. Alessi, A. Cortesi, I. Kikic, N. R. Foster, S. J. Macnaughton, I. Colombo, Ind. Eng. Chem. Res., 1996, 35, 4718.CrossRefGoogle Scholar
  8. 8.
    N. Foster, R. Mammucari, F. Dehghani, A. Barrett, K. Bezanehtak, E. Coen, G. Combes, L. Meure, A. Ng, H. L. Regtop, A. Tandya, Ind. Eng. Chem. Res., 2003, 42, 6476.CrossRefGoogle Scholar
  9. 9.
    D. J. Oh, B. C. Lee, J. Chem. Eng., 2007, 52, 1273.Google Scholar
  10. 10.
    M. Perrut, J. Jung, F. Leboeuf, Int. J. Pharm., 2005, 288, 3.CrossRefGoogle Scholar
  11. 11.
    E. Rodier, H. Lochard, M. Sauceau, J.-J. Letourneau, B. Freiss, J. Fages, Eur. J. Pharm. Sci., 2005, 26, 184.CrossRefGoogle Scholar
  12. 12.
    S. Ismadji, S. K. Bhatia, J. Supercrit. Fluids, 2003, 27, 1.CrossRefGoogle Scholar
  13. 13.
    G. Madras, C. Kulkarni, J. Modak, Fluid Phase Equilib., 2003, 209, 207.CrossRefGoogle Scholar
  14. 14.
    H. Yang, C. Zhong, J. Supercrit. Fluids, 2005, 33, 99.CrossRefGoogle Scholar
  15. 15.
    A. Sane, S. Taylor, Y.-P. Sun, M. C. Thies, J. Supercrit. Fluids, 2004, 28, 277.CrossRefGoogle Scholar
  16. 16.
    U. Kopcak, R. S. Mohamed, J. Supercrit. Fluids, 2005, 34, 209.CrossRefGoogle Scholar
  17. 17.
    S. Kumar Jha, G. Madras, Fluid Phase Equilib., 2005, 238, 174.CrossRefGoogle Scholar
  18. 18.
    S. Guha, G. Madras, Fluid Phase Equilib., 2001, 187, 255.CrossRefGoogle Scholar
  19. 19.
    M. Hojjati, Y. Yamini, M. Khajeh, A. Vatanara, J. Supercrit. Fluids, 2007, 41, 187.CrossRefGoogle Scholar
  20. 20.
    R. Put, C. Perrin, F. Questier, D. Coomans, D. L. Massart, Y. Vander Heyden, J. Chromatogr. A, 2003, 988, 261.CrossRefGoogle Scholar
  21. 21.
    L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification and Regression Trees, Wadsworth, Monterey, 1984.Google Scholar
  22. 22.
    N. Lavrac, Artif. Intell. Med., 1999, 16, 3.CrossRefGoogle Scholar
  23. 23.
    R. J. Marshall, J. Clin. Epidemiol., 2001, 54, 603.CrossRefGoogle Scholar
  24. 24.
    G. De´Ath, K. E. Fabricius, Ecology, 2000, 81, 3178.CrossRefGoogle Scholar
  25. 25.
    P. Tittonell, K. D. Shepherd, B. Vanlauwe, K. E. Giller, Agr. Ecosyst. Environ., 2008, 123, 137.CrossRefGoogle Scholar
  26. 26.
    F. Questier, R. Put, D. Coomans, B. Walczak, Y. Vander Heyden, Chemometr. Intell. Lab., 2005, 76, 45.CrossRefGoogle Scholar
  27. 27.
    M. Jalali-Heravi, P. Shahbazikhah, Electrophoresis, 2008, 29, 363.CrossRefGoogle Scholar
  28. 28.
    M. Atabati, K. Zarei, E. Abdinasab, Bull. Korean Chem. Soc., 2009, 30, 2717.CrossRefGoogle Scholar
  29. 29.
    L. A. Zadeh, Infom. Control., 1965, 8, 338.CrossRefGoogle Scholar
  30. 30.
    M. Sugeno, G. T. Kang, Fuzzy Sets Syst., 1988, 28, 15.CrossRefGoogle Scholar
  31. 31.
    B. Vincenzi, D. Santini, G. Avvisati, A. Baldi, A. La Cesa, G. Tonini, Med. Hypotheses, 2003, 61, 98.CrossRefGoogle Scholar
  32. 32.
    E. S. Istvan, J. Deisenhofer, Science, 2001, 292, 1160.CrossRefGoogle Scholar
  33. 33.
    W. Palinski, Nat. Med., 2000, 6, 1311.CrossRefGoogle Scholar
  34. 34.
    J.-S. R. Jang, IEEE Ttans. Syst. Man. Cyb., 1993, 23, 665.CrossRefGoogle Scholar
  35. 35.
    HyperChem (ver. 7.0), Hypercube; http://www.hyper.com.Google Scholar
  36. 36.
    R. Todeschini, Dragon; http://www.disat.unimib.it/chm; https://chm.kode-solutions.net/products_dragon.php.Google Scholar
  37. 37.
    SPSS (ver. 13.0), SPSS, Inc.; http://www.spss.com.Google Scholar
  38. 38.
    MATLAB (ver. 7.04), Math Works; http://www.mathworks.com.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of ChemistryDamghan UniversityDamghanIran

Personalised recommendations