Russian Chemical Bulletin

, Volume 65, Issue 4, pp 1076–1085 | Cite as

Hybrid azobenzene-doped nanoporous polymers derived from cubic octavinylsilsesquioxane

Full Articles


A series of novel hybrid porous polymers (HPPs) with high specific surface areas were first prepared by one-step ternary cross-linking copolymerization of octavinylsilsesquioxane (OVS), 1,3,5-tribromobenzene, and 4,4´-dibromoazobenzene via the Heck reaction. The porosities and the CO2 uptake capacities of resulting azobenzene-doped porous polymers could be tuned by modulating the molar percentage of the azo units. At 273 K and 101 kPa, the sample with the specific surface area of ~700 m2 g–1 (data of Brunauer—Emmett—Teller (BET) surface area analysis) showed the highest CO2 uptake of 5.45 wt.% (1.20 mmol g–1) among the fabricated HPPs.


porous materials silsesquioxanes Heck reaction azobenzene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Germain, J. M. Fréchet, F. Svec, Small, 2009, 5, 1098.CrossRefGoogle Scholar
  2. 2.
    R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci., 2012, 37, 530.CrossRefGoogle Scholar
  3. 3.
    N. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles, M. D. Guiver, Nat. Mater., 2011, 10, 372.CrossRefGoogle Scholar
  4. 4.
    C. G. Bezzu, M. Carta, A. Tonkins, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. McKeown, Adv. Mater., 2012, 24, 5930.CrossRefGoogle Scholar
  5. 5.
    J. Schmidt, J. Weber, J. D. Epping, M. Antonietti, A. Thomas, Adv. Mater., 2009, 21, 702.CrossRefGoogle Scholar
  6. 6.
    G. J. D. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev., 2002, 102, 4093.CrossRefGoogle Scholar
  7. 7.
    N. B. McKeown, P. M. Budd, Chem. Soc. Rev., 2006, 35, 675.CrossRefGoogle Scholar
  8. 8.
    D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev., 2012, 112, 3959.CrossRefGoogle Scholar
  9. 9.
    L. Sun, Z. Liang, J. Yu, Polym. Chem., 2015, 6, 917.CrossRefGoogle Scholar
  10. 10.
    W. Yang, X. Jiang, H. Liu, RSC Adv., 2015, 5, 12800.CrossRefGoogle Scholar
  11. 11.
    S. Wan, J. Guo, J. Kim, H. Ihee, D. Jiang, Angew. Chem., 2008, 120, 8958.CrossRefGoogle Scholar
  12. 12.
    R. Dawson, D. J. Adams, A. I. Cooper, Chem. Sci., 2011, 2, 1173.CrossRefGoogle Scholar
  13. 13.
    U. H. Bunz, K. Seehafer, F. L. Geyer, M. Bender, I. Braun, E. Smarsly, J. Freudenberg, Macromol. Rapid Commun., 2014, 35, 1466.CrossRefGoogle Scholar
  14. 14.
    Y. Wu, D. Wang, L. Li, W. Yang, S. Feng, H. Liu, J. Mater. Chem. A, 2014, 2, 2160.CrossRefGoogle Scholar
  15. 15.
    H. Urakami, K. Zhang, F. Vilela, Chem. Commun., 2013, 49, 2353.CrossRefGoogle Scholar
  16. 16.
    B. Kiskan, J. Weber, ACS Macro Lett., 2011, 1, 37.CrossRefGoogle Scholar
  17. 17.
    V. Guillerm,. J. Weselinśki, M. Alkordi, M. I. H. Mohideen, Y. Belmabkhout, A. J. Cairns, M. Eddaoudi, Chem. Commun., 2014, 50, 1937.CrossRefGoogle Scholar
  18. 18.
    Z. Xiang, D. Cao, W. Wang, W. Yang, B. Han, J. Lu, J. Phys. Chem. C, 2012, 116, 5974.CrossRefGoogle Scholar
  19. 19.
    D. B. Cordes, P. D. Lickiss, F. Rataboul, Chem. Rev., 2010, 110, 2081.CrossRefGoogle Scholar
  20. 20.
    Y. Zhu, W. Zhang, Chem. Sci., 2014, 5, 4957.CrossRefGoogle Scholar
  21. 21.
    R. M. Laine, M. F. Roll, Macromolecules, 2011, 44, 1073.CrossRefGoogle Scholar
  22. 22.
    E. O. Dare, L. K. Liu, J. Peng, Dalton Trans., 2006, 3668.Google Scholar
  23. 23.
    K. Kanamori, J. Mater. Res., 2014, 29, 2773.CrossRefGoogle Scholar
  24. 24.
    L. Guo, W. Wang, J. U. Otaigbe, J. Tissue Eng. Regen. Med., 2010, 4, 553.CrossRefGoogle Scholar
  25. 25.
    X. Jing, F. Sun, H. Ren, Y. Tian, M. Guo, L. Li, G. Zhu, Microporous Mesoporous Mater., 2013, 165, 92.CrossRefGoogle Scholar
  26. 26.
    J. J. Morrison, C. J. Love, B. W. Manson, I. J. Shannon, R. E. Morris, J. Mater. Chem., 2002, 12, 3208.CrossRefGoogle Scholar
  27. 27.
    W. Chaikittisilp, A. Sugawara, A. Shimojima, T. Okubo, Chem. Eur. J., 2010, 16, 6006.CrossRefGoogle Scholar
  28. 28.
    W. Chaikittisilp, A. Sugawara, A. Shimojima, T. Okubo, Chem. Mater., 2010, 22, 4841.CrossRefGoogle Scholar
  29. 29.
    D. Wang, L. Xue, L. Li, B. Deng, S. Feng, H. Liu, X. Zhao, Macromol. Rapid Commun., 2013, 34, 861.CrossRefGoogle Scholar
  30. 30.
    W. Chaikittisilp, M. Kubo, T. Moteki, A. Sugawara-Narutaki, A. Shimojima, T. Okubo, J. Am. Chem. Soc., 2011, 133, 13832.CrossRefGoogle Scholar
  31. 31.
    W. Yang, D. Wang, L. Li, H. Liu, Eur. J. Inorg. Chem., 2014, 2976.Google Scholar
  32. 32.
    Y. Qin, H. Ren, F. Zhu, L. Zhang, C. Shang, Z. Wei, M. Luo, Eur. Polym. J., 2011, 47, 853.CrossRefGoogle Scholar
  33. 33.
    N. Shanmugam, K. T. Lee, W. Y. Cheng, S. Y. Lu, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 2521.CrossRefGoogle Scholar
  34. 34.
    M. Roll, J. Kampf, Y. Kim, E. Yi, R. Laine, J. Am. Chem. Soc., 2010, 132, 10171.CrossRefGoogle Scholar
  35. 35.
    Y. Kim, K. Koh, M. F. Roll, R. M. Laine, A. J. Matzger, Macromolecules, 2010, 43, 6995.CrossRefGoogle Scholar
  36. 36.
    M. Winkler, L. M. de Espinosa, C. Barner-Kowollik, M. A. Meier, Chem. Sci., 2012, 3, 2607.CrossRefGoogle Scholar
  37. 37.
    A. Pogantsch, S. Rentenberger, G. Langer, J. Keplinger, W. Kern, E. Zojer, Adv. Funct. Mater., 2005, 15, 403.CrossRefGoogle Scholar
  38. 38.
    J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, Angew. Chem., Int. Ed., 2007, 46, 8574.CrossRefGoogle Scholar
  39. 39.
    J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. Jones, Y. Z. Khimyak, A. I. Cooper, J. Am. Chem. Soc., 2008, 130, 7710.CrossRefGoogle Scholar
  40. 40.
    P. Zhang, Z. Weng, J. Guo, C. Wang, Chem. Mater., 2011, 23, 5243.CrossRefGoogle Scholar
  41. 41.
    V. Borisenko, D. C. Burns, Z. Zhang, G. A. Woolley, J. Am. Chem. Soc., 2000, 122, 6364.CrossRefGoogle Scholar
  42. 42.
    N. Liu, Z. Chen, D. R. Dunphy, Y. B. Jiang, R. A. Assink, C. J. Brinker, Angew. Chem., Int. Ed., 2003, 42, 1731.CrossRefGoogle Scholar
  43. 43.
    N. Li, J. Lu, Q. Xu, L. Wang, Opt. Mater., 2006, 28, 1412.CrossRefGoogle Scholar
  44. 44.
    A. A. Beharry, G. A. Woolley, Chem. Soc. Rev., 2011, 40, 4422.CrossRefGoogle Scholar
  45. 45.
    M. Petr, P. T. Hammond, Macromolecules, 2011, 44, 8880.CrossRefGoogle Scholar
  46. 46.
    H. A. Patel, S. H. Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz, A. Coskun, Nat. Commun., 2013, 4, 1357.CrossRefGoogle Scholar
  47. 47.
    H. Nishioka, X. Liang, H. Kashida, H. Asanuma, Chem. Commun., 2007, 4354.Google Scholar
  48. 48.
    T. Chen, S. Xu, F. Zhang, D. G. Evans, X. Duan, Chem. Eng. Sci., 2009, 64, 4350.CrossRefGoogle Scholar
  49. 49.
    H. Chi, K. Y. Mya, T. Lin, C. He, F. Wang, W. S. Chin, New J. Chem., 2013, 37, 735.CrossRefGoogle Scholar
  50. 50.
    Y. Liu, W. Yang, H. Liu, Chem. Eur. J., 2015, 21, 4731.CrossRefGoogle Scholar
  51. 51.
    D. Chen, S. Yi, W. Wu, Y. Zhong, J. Liao, C. Huang, W. Shi, Polymer, 2010, 51, 3867.CrossRefGoogle Scholar
  52. 52.
    W. Zhang, K. Yoshida, M. Fujiki, X. Zhu, Macromolecules, 2011, 44, 5105.CrossRefGoogle Scholar
  53. 53.
    R. H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev., 1995, 95, 1409.CrossRefGoogle Scholar
  54. 54.
    S. Guo, A. Sugawara-Narutaki, T. Okubo, A. Shimojima, J. Mater. Chem. C, 2013, 1, 6989.CrossRefGoogle Scholar
  55. 55.
    G. Cheng, N. R. Vautravers, R. E. Morris, D. J. Cole-Hamilton, Org. Biomol. Chem., 2008, 6, 4662.CrossRefGoogle Scholar
  56. 56.
    K. S. Sing, Pure Appl. Chem., 1985, 57, 603.CrossRefGoogle Scholar
  57. 57.
    M. Rose, N. Klein, W. Böhlmann, B. Böhringer, S. Fichtner, S. Kaskel, Soft Matter, 2010, 6, 3918.CrossRefGoogle Scholar
  58. 58.
    Y. Peng, T. Ben, J. Xu, M. Xue, X. Jing, F. Deng, S. Qiu, G. Zhu, Dalton Trans., 2011, 40, 2720.CrossRefGoogle Scholar
  59. 59.
    S. Wang, L. Tan, C. Zhang, I. Hussain, B. Tan, J. Mater. Chem. A, 2015, 3, 6542.CrossRefGoogle Scholar
  60. 60.
    K. Rameshbabu, P. Kannan, Polym. Int., 2006, 55, 151.CrossRefGoogle Scholar
  61. 61.
    S. Choi, J. H. Drese, C. W. Jones, ChemSusChem, 2009, 2, 796.CrossRefGoogle Scholar
  62. 62.
    Q. Chen, D. P. Liu, M. Luo, L. J. Feng, Y. C. Zhao, B. H. Han, Small, 2014, 10, 308.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical EngineeringShandong UniversityJinanPeople’s Republic of China
  2. 2.State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations