Advertisement

Russian Chemical Bulletin

, Volume 65, Issue 3, pp 658–665 | Cite as

Formation of negative ions via resonant low-energy electron capture by cysteine and cystine methyl esters

  • M. V. Muftakhov
  • P. V. Shchukin
  • R. V. Khatymov
  • R. F. Tuktarov
Full Articles

Abstract

The processes of resonance low-energy free electron attachment to methyl esters of some sulfur-containing amino acids were studied. The long-lived molecular negative ions of cystine dimethyl ester formed in the valence state via the Feshbach nuclear excited resonance mechanism were detected by mass spectrometry. The reactions of disulfide bond dissociation were identified in an electron energy range of 0—1 eV. They can be considered as model reactions regarding processes of peptide decomposition due to the resonance interaction with low-energy electrons. Predissociation of short-lived molecular ions of cysteine methyl ester formed by capture of electrons with energies of ~1.6 eV is accompanied by the intra-ionic transfer of negative charge from the carbonyl group to the sulfur atom leading to the elimination from the latter of hydrogen atom.

Key words

mass spectrometry resonant electron capture negative ions cysteine methyl ester cystine dimethyl ester charge transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Gohlke, A. Rosa, E. Illenberger, F. Brüning, M. A. Huels, J. Chem. Phys., 2002, 116, 10164.CrossRefGoogle Scholar
  2. 2.
    S. Ptasiñska, S. Denifl, P. Candori, S. Matejcik, P. Scheier, T. D. Märk, Chem. Phys. Lett., 2005, 403, 107.CrossRefGoogle Scholar
  3. 3.
    P. Papp, J. Urban, S. Matejcik, M. Stano, O. Ingolfsson, J. Chem. Phys., 2006, 125, 204301.CrossRefGoogle Scholar
  4. 4.
    S. Denifl, H. D. Flosadttir, A. Edtbauer, O. Inglfsson, T. D. Märk, P. Scheier, Eur. Phys. J., 2010, 60, 37.Google Scholar
  5. 5.
    P. Papp, P. Shchukin, S. Matejcik, J. Chem. Phys., 2010, 132, 014301.CrossRefGoogle Scholar
  6. 6.
    J. Kocisek, P. Papp, P. Mach, Y. V. Vasilév, M. L. Deinzer, S. Matejcik, J. Phys. Chem. A, 2010, 114, 1677.CrossRefGoogle Scholar
  7. 7.
    Y. V. Vasilév, B. J. Figard, V. G. Voinov, D. F. Barofsky, M. L. Deinzer, J. Am. Chem. Soc., 2006, 128, 5506.CrossRefGoogle Scholar
  8. 8.
    H. Abdoul-Carime, E. Illenberger, Chem. Phys. Lett., 2004, 397, 309.CrossRefGoogle Scholar
  9. 9.
    P. Sulzer, E. Alizadeh, A. Mauracher, T. D. Märk, P. Scheier, Int. J. Mass Spectrom., 2008, 277, 274.CrossRefGoogle Scholar
  10. 10.
    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Chem. Phys. Lett., 2005, 402, 497.CrossRefGoogle Scholar
  11. 11.
    M. V. Muftakhov, P. V. Shchukin, Russ. Chem. Bull. (Int. Ed.), 2010, 50, 896 [Izv. Akad. Nauk, Ser. Khim., 2010, 875].CrossRefGoogle Scholar
  12. 12.
    M. V. Muftakhov, P. V. Shchukin, Phys. Chem. Chem. Phys., 2011, 13, 4600.CrossRefGoogle Scholar
  13. 13.
    P. V. Shchukin, M. V. Muftakhov, A. V. Pogulay, Rapid Commun. Mass Spectrom., 2012, 26, 828.CrossRefGoogle Scholar
  14. 14.
    M. V. Muftakhov, P. V. Shchukin, Russ. Chem. Bull. (Int. Ed.), 2014, 63, 642 [Izv. Akad. Nauk, Ser. Khim., 2014, 642].CrossRefGoogle Scholar
  15. 15.
    Y. V. Vasilév, B. J. Figard, D. F. Barofsky, M. L. Deinzer, Int. J. Mass Spectrom., 2007, 268, 106.CrossRefGoogle Scholar
  16. 16.
    V. A. Mazunov, P. V. Shchukin, R. V. Khatymov, M. V. Muftakhov, Mass-spektrometriya [Mass Spectrometry], 2006, 3, 11 (in Russian).Google Scholar
  17. 17.
    M. V. Muftakhov, Yu. V. Vasilév, V. A. Mazunov, Rapid Commun. Mass Spectrom., 1999, 13, 1104.CrossRefGoogle Scholar
  18. 18.
    R. V. Khatymov, M. V. Muftakhov, V. A. Mazunov, Rapid Commun. Mass Spectrom., 2003, 17, 2327.CrossRefGoogle Scholar
  19. 19.
    D. Edelson, J. E. Griffiths, K. B. McAffe, J. Chem. Phys., 1962, 73, 919.Google Scholar
  20. 20.
    J. Wu, X. Xu, J. Chem. Phys., 2007, 127, 214105.CrossRefGoogle Scholar
  21. 21.
    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Phys. Chem. Chem. Phys., 2004, 6, 161.CrossRefGoogle Scholar
  22. 22.
    K. Aflatooni, B. Hitt, G. A. Gallup, P. D. Burrow, J. Chem. Phys., 2001, 115, 6489.CrossRefGoogle Scholar
  23. 23.
    J. Kopyra, I. Szamrej, H. Abdoul-Carime, B. Farizonbc, M. Farizon, Phys. Chem. Chem. Phys., 2012, 14, 8000CrossRefGoogle Scholar
  24. 24.
    B. J. Pepe, R. Fairman, Curr. Opin. Struct. Biol., 2009, 19, 483.CrossRefGoogle Scholar
  25. 25.
    Y. S. Yew, G. Shekhawat, N. Wangoo, S. Mhaisalkar, C. R. Suri, V. P. Dravid, Y. M. Lam, Nanotechnology, 2011, 22, 215606.CrossRefGoogle Scholar
  26. 26.
    M. V. Muftakhov, P. V. Shchukin, J. Anal. Chem., 2013, 68, 1200 [Mass Spectrometry, 2013, 10, 39].CrossRefGoogle Scholar
  27. 27.
    Yu. V. Vasilév, R. R. Abzalimov, S. K. Nasibullaev, T. Drevello, Fullerene, Nanotubes and Carbon Nanostructures, 2004, 12, 229.CrossRefGoogle Scholar
  28. 28.
    M. V. Muftakhov, Yu. V. Vasilév, R. V. Khatymov, V. A. Mazunov, V. V. Takhistov, O. V. Travkin, E. V. Yakovleva, Rapid Commun. Mass Spectrom., 1999, 13, 912.CrossRefGoogle Scholar
  29. 29.
    A. Modelli, D. Jones, G. Distefano, M. Tronc, Chem. Phys. Lett., 1991, 181, 361.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. V. Muftakhov
    • 1
  • P. V. Shchukin
    • 1
  • R. V. Khatymov
    • 1
  • R. F. Tuktarov
    • 1
  1. 1.Institute of Molecule and Crystal PhysicsUfa Research Center of the Russian Academy of SciencesUfaRussian Federation

Personalised recommendations