Russian Chemical Bulletin

, Volume 64, Issue 10, pp 2433–2437 | Cite as

Multiple chain termination by aromatic nitroxides in oxidation of styrene

  • I. V. Tikhonov
  • E. M. Pliss
  • D. A. Bogoyavlenskii
  • M. P. Berezin
  • V. D. Sen’


The antioxidant activity of aromatic nitroxides in the oxidation of styrene was studied using a complex of kinetic methods in combination with quantum chemical calculations and kinetic modeling. During oxidation of styrene and its saturated analog, ethylbenzene, aromatic nitroxides terminate oxidation chains via the reaction with both alkyl and peroxyl radicals. The mechanism of the process was proposed, which explains multiple chain termination by the interaction of peroxyl and nitroxide radicals revealed in the investigation of styrene oxidation.


aromatic nitroxides inhibited oxidation inhibition coefficient regeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. T. Denisov, I. B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology, CRC Press, Boca Raton, 2005, 1043 p.CrossRefGoogle Scholar
  2. 2.
    E. M. Pliss, I. V. Tikhonov, A. I. Rusakov, in Nitroxides–Theory, Experiment and Applications, Ed. A. I. Kokorin, InTech, Rijeka, 2012, 263.Google Scholar
  3. 3.
    E. M. Pliss, I. V. Tikhonov, A. I. Rusakov, Russ. J. Phys. Chem. B (Engl. Transl.), 2012, 6, 376 [Khim. Fizika, 2012, 31, 41].CrossRefGoogle Scholar
  4. 4.
    A. V. Sirick, R. E. Pliss, A. I. Rusakov, E. M. Pliss, Oxid. Commun., 2014, 37, 32. Received December 11, 2014; in revised form March 23, 2015Google Scholar
  5. 5.
    A. V. Sirick, R. E. Pliss, A. I. Rusakov, E. M. Pliss, Oxid. Commun., 2014, 37, 37.Google Scholar
  6. 6.
    S. Goldstein, A. Samuni, J. Phys. Chem. A, 2007, 111, 1066.CrossRefGoogle Scholar
  7. 7.
    S. Goldstein, A. Samuni, in Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, Ed. R. G. Hicks, John Wiley & Sons, Chichester, 2010, 567.Google Scholar
  8. 8.
    C. Berti, Synthesis, 1983, 793.Google Scholar
  9. 9.
    V. A. Golubev, V. D. Sen, Zh. Organ. Khimii, 2013, 49, 572 [Russ. J. Organ. Chem. (Engl. Transl.), 2013, 49].Google Scholar
  10. 10.
    D. Loshadkin, V. Roginsky, E. Pliss, Int. J. Chem. Kinet., 2002, 34, 162.CrossRefGoogle Scholar
  11. 11.
    A. A. Granovsky, Firefly version 8, gran/firefly/index.html.Google Scholar
  12. 12.
    A. V. Sokolov, S. V. Popov, E. M. Pliss, D. V. Loshadkin, The official bulletin of Federal Service of Intelectual Property “Programmes for Computers. Data Bases. Integrated-cincuit layout”, 3, publ. 20.03.2013.Google Scholar
  13. 13.
    D. A. Bogoyavlensky, I. V. Tihonov, E. M. Pliss, A. I. Rusakov, Bashkir. Khim. Zh., 2014, 21, ? 4, 25.Google Scholar
  14. 14.
    L. V. Ruban, A. L. Buchachenko, M. B. Neiman, Yu. V. Kokhanov, Polym. Sci. USSR (Engl. Transl.), 1966, 8, 1812 [Vysokomolekulyar. Soedineniya, 1966, 8, 1642].CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • I. V. Tikhonov
    • 1
  • E. M. Pliss
    • 1
  • D. A. Bogoyavlenskii
    • 1
  • M. P. Berezin
    • 2
  • V. D. Sen’
    • 2
  1. 1.P. G. Demidov Yaroslavl State UniversityYaroslavlRussian Federation
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations