Advertisement

Russian Chemical Bulletin

, Volume 64, Issue 10, pp 2400–2407 | Cite as

Specific features of the formation of co-adsorption layers on metal surfaces with the participation of simple molecules: NH3 + CO on Pt(111)

  • M. Yu. Smirnov
Article
  • 31 Downloads

Abstract

The co-adsorption of ammonia and carbon monoxide on the Pt(111) surface was studied at temperatures <300 K using high-resolution electron energy loss spectroscopy (HREELS). The state of ammonia and carbon monoxide molecules in the co-adsorption layer was established to differ significantly from their state in individual adsorption layers. The adsorption of CO on a clean surface occurs with the primary filling of single-bound terminal sites, whereas the bridging sites are filled preferably by CO molecules in the presence of NH3,ads. The symmetry axis of ammonia molecules adsorbed on the clean surface is parallel to the normal to the surface, whereas in the co-adsorption layers the interaction with COads molecules results in the deviation of the symmetry axis toward the surface. Presumably, the observed changes in the state of adsorbed molecules are due to the donor-acceptor interaction inducing the electron density transfer from ammonia molecules across the metal surface to CO molecules.

Keywords

ammonia carbon monoxide platinum adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kratkii spravochnik fiziko-khimicheskikh velichin [Brief Manual of Physicochemical Magnitudes], Eds K. P. Mishchenko and A. A. Ravdel, Khimiya, Leningrad, 1974, p. 144 (in Russian).Google Scholar
  2. 2.
    C. W. Seabury, T. N. Rhodin, R. J. Purtell, R. P. Merrill, Surf. Sci., 1980, 93, 117.CrossRefGoogle Scholar
  3. 3.
    G. Fisher, Chem. Phys. Lett., 1981, 79, 452.CrossRefGoogle Scholar
  4. 4.
    C. Egawa, S. Naito, K. Tamaru, Surf. Sci., 1984, 138, 279.CrossRefGoogle Scholar
  5. 5.
    B. A. Sexton, G. E. Mitchell, Surf. Sci., 1980, 99, 523.CrossRefGoogle Scholar
  6. 6.
    B. A. Sexton, G. E. Mitchell, Surf. Sci., 1980, 99, 539.CrossRefGoogle Scholar
  7. 7.
    Y. Zhou, S. Akhter, J. M. White, Surf. Sci., 1988, 202, 357.CrossRefGoogle Scholar
  8. 8.
    W. Widdra, T. Moritz, K. L. Kostov, P. König, M. Staufer, U. Birkenheuer, Surf. Sci., 1999, 430, L558.CrossRefGoogle Scholar
  9. 9.
    J. E. Parmeter, Y. Wang, C. B. Mullins, W. H. Weinberg, J. Chem. Phys., 1988, 88, 5225.CrossRefGoogle Scholar
  10. 10.
    J. A. Rodriguez, W. K. Kuhn, C. M. Troung, D. W. Goodman, Surf. Sci., 1992, 271, 333.CrossRefGoogle Scholar
  11. 11.
    Z. Xu, L. Hanley, J. T. Yates, J. Chem. Phys., 1992, 96, 1621.CrossRefGoogle Scholar
  12. 12.
    H. E. Dastoor, P. Gardner, D. A. King, Surf. Sci., 1993, 289, 279.CrossRefGoogle Scholar
  13. 13.
    I. Villegas, M. J. Weaver, Surf. Sci., 1996, 367, 162.CrossRefGoogle Scholar
  14. 14.
    C. Benndorf, T. E. Madey, Chem. Phys. Lett., 1983, 101, 59.CrossRefGoogle Scholar
  15. 15.
    C. Klauber, M. D. Alvey, J. T. Yates, Chem. Phys. Lett., 1984, 106, 477.CrossRefGoogle Scholar
  16. 16.
    M. D. Alvey, C. Klauber, J. T. Yates, J. Vac. Sci. Technol. A, 1985, 3, 1631.CrossRefGoogle Scholar
  17. 17.
    D. Mocuta, J. Ahner, J. T. Yates, Surf. Sci., 1997, 383, 299.CrossRefGoogle Scholar
  18. 18.
    C. Benndorf, T. E. Madey, Surf. Sci., 1983, 135, 164.CrossRefGoogle Scholar
  19. 19.
    K. Jacobi, E. S. Jensen, T. N. Rhodin, R. P. Merrill, Surf. Sci., 1981, 108, 397.CrossRefGoogle Scholar
  20. 20.
    O. L. C. Bracho, V. A. Ranea, I. M. Irurzun, R. Imbihl, E. E. Mola, Chem. Phys. Lett., 2011, 505, 21.CrossRefGoogle Scholar
  21. 21.
    Z. Jiang, Q. Pan, M. Li, T. Yan, T. Fang, Appl. Surf. Sci., 2014, 292, 494.CrossRefGoogle Scholar
  22. 22.
    Z. Jiang, P. Qin, T. Fang, Chem. Phys., 2014, 445, 59.CrossRefGoogle Scholar
  23. 23.
    R. M. van Hardeveld, R. A. van Santen, J. W. Niemantsverdriet, Surf. Sci., 1996, 369, 23.CrossRefGoogle Scholar
  24. 24.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Parts A and B, John Wiley and Sons, New York, 1997.Google Scholar
  25. 25.
    F. Netzer, T. E. Madey, Surf. Sci., 1982, 119, 422.CrossRefGoogle Scholar
  26. 26.
    F. Netzer, T. E. Madey, Phys. Rev. Lett., 1981, 47, 928.CrossRefGoogle Scholar
  27. 27.
    M. L. Wagner, L. D. Schmidt, J. Phys. Chem., 1995, 99, 805.CrossRefGoogle Scholar
  28. 28.
    P. R. Davies, M. W. Roberts, N. Shukla, D. J. Vincent, Surf. Sci., 1995, 325, 50.CrossRefGoogle Scholar
  29. 29.
    T. E. Madey, C. Benndorf, Surf. Sci., 1985, 152/153, 587.CrossRefGoogle Scholar
  30. 30.
    G. T. Fraser, D. D. Nelson, K. I. Peterson, W. Klemperer, J. Chem. Phys., 1986, 84, 2472.CrossRefGoogle Scholar
  31. 31.
    C. H. Xia, K. A. Walker, A. R. W. McKellar, Mol. Phys. 2001, 99, 643.CrossRefGoogle Scholar
  32. 32.
    H. Tochihara, G. Rocker, J. D. Redding, J. T. Yates, R. M. Martin, H. Metiu, Surf. Sci., 1986, 176, 1.CrossRefGoogle Scholar
  33. 33.
    W. Erley, Surf. Sci., 1990, 240, 1.CrossRefGoogle Scholar
  34. 34.
    M. J. Dresser, A.-M. Lanzillotto, M. D. Alvey, J. T. Yates, Surf. Sci., 1987, 191, 1.CrossRefGoogle Scholar
  35. 35.
    A.-M. Lanzillotto, M. J. Dresser, M. D. Alvey, J. T. Yates, Surf. Sci., 1987, 191, 15.CrossRefGoogle Scholar
  36. 36.
    T. Sasaki, T. Aruga, H. Kuroda, Y. Iwasawa, Surf. Sci., 1990, 240, 223.CrossRefGoogle Scholar
  37. 37.
    T. Sasaki, Y. Iwasawa, Surf. Sci., 1997, 384, L798.CrossRefGoogle Scholar
  38. 38.
    H. Pfnür, P. Feulner, D. Menzel, J. Chem. Phys., 1983, 79, 4613.CrossRefGoogle Scholar
  39. 39.
    H. Steininger, S. Lehwald, H. Ibach, Surf. Sci., 1982, 123, 264.CrossRefGoogle Scholar
  40. 40.
    V. A. Sobyanin, Poverkhnost [Surface], 1986, No. 10, 65 (in Russian).Google Scholar
  41. 41.
    P. R. Norton, J. W. Goodale, E. B. Selkirk, Surf. Sci., 1979, 83, 189.CrossRefGoogle Scholar
  42. 42.
    J. T. Ranney, A. J. Franz, J. L. Gland, Surf. Sci., 1997, 384, L865.CrossRefGoogle Scholar
  43. 43.
    H. Froitzheim, H. Hopster, H. Ibach, S. Lehwald, Appl. Phys., 1977, 13, 147.CrossRefGoogle Scholar
  44. 44.
    H. Hopster, H. Ibach, Surf. Sci., 1978, 77, 109.CrossRefGoogle Scholar
  45. 45.
    N. R. Avery, J. Chem. Phys., 1981, 74, 4202.CrossRefGoogle Scholar
  46. 46.
    F. Bondino, G. Comelli, F. Esch, A. Locatelli, A. Baraldi, S. Lizzit, G. Paolucci, R. Rosei, Surf. Sci., 2000, 459, L467.CrossRefGoogle Scholar
  47. 47.
    D. F. Ogletree, M. A. van Hove, G. A. Somorjai, Surf. Sci., 1986, 173, 351.CrossRefGoogle Scholar
  48. 48.
    W. D. Mieher, L. J. Whitman, W. Ho, J. Phys. Chem., 1989, 91, 3228.CrossRefGoogle Scholar
  49. 49.
    D. M. Newns, Vibrational Spectroscopy of Adsorbates, Ed. R. F. Willis, Springer-Verlag, Berlin, 1980, p. 19.Google Scholar
  50. 50.
    J. L. Gland, E. B. Kollin, Surf. Sci., 1981, 104, 478.CrossRefGoogle Scholar
  51. 51.
    W. D. Mieher, W. Ho, Surf. Sci., 1995, 322, 151.CrossRefGoogle Scholar
  52. 52.
    K. S. Krasnov, V. S. Timoshinin, T. G. Danilova, S. V. Khandozhko, Molekulyarnye postoyannye neorganicheskikh soedinenii [Molecular Constants of Inorganic Compounds], Khimiya, Leningrad, 1968, 256 pp. (in Russian).Google Scholar
  53. 53.
    W. K. Offermans, A. P. J. Jansen, R. A. van Santen, Surf. Sci., 2006, 600, 1714.CrossRefGoogle Scholar
  54. 54.
    G. Novell-Leruth, A. Varcarcel, A. Clotet, J. M. Ricart, J. Perez-Ramirez, J. Phys. Chem. B, 2005, 109, 18061.CrossRefGoogle Scholar
  55. 55.
    G. Novell-Leruth, A. Varcarcel, J. Perez-Ramirez, J. M. Ricart, J. Phys. Chem. C, 2007, 111, 860.CrossRefGoogle Scholar
  56. 56.
    D. A. Daramola, G. G. Botte, Computational and Theoretical Chem., 2012, 989, 7.CrossRefGoogle Scholar
  57. 57.
    A. Peronio, A. Cepellotti, S. Marchini, N. Abdurakhmanova, C. Dri, C. Africh, F. Esch, M. Peressi, G. Comelli, J. Phys. Chem. C, 2013, 117, 21186.CrossRefGoogle Scholar
  58. 58.
    A. Cepellotti, A. Peronio, S. Marchini, N. Abdurakhmanova, C. Dri, C. Africh, F. Esch, G. Comelli, M. Peressi, J. Phys. Chem. C, 2013, 117, 21196.CrossRefGoogle Scholar
  59. 59.
    M. Yu. Smirnov, V. V. Gorodetskii, in Mekhanizmy adsorbtsii kataliza na chistykh poverkhnostyakh metallov [Mechanisms of Catalysis and Adsorption on Clean Metal Surfaces], Ed. V. I. Savchenko, Institute of Catalysis, Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1989, p. 3 (in Russian).Google Scholar
  60. 60.
    P. Deshlahara, J. Conway, E. E. Wolf, W. F. Schneider, Langmuir, 2012, 28, 8408.CrossRefGoogle Scholar
  61. 61.
    Y. Wang, S. de Gironcoli, N. S. Hush, J. R. Reimers, J. Am. Chem. Soc., 2007, 129, 10402.CrossRefGoogle Scholar
  62. 62.
    G. Blyholder, J. Phys. Chem., 1964, 68, 2772.CrossRefGoogle Scholar
  63. 63.
    A. M. Baro, H. Ibach, J. Chem. Phys., 1979, 71, 4812.CrossRefGoogle Scholar
  64. 64.
    H. Ogasawara, J. Yoshinobu, M. Kawai, Surf. Sci., 1997, 386, 73.CrossRefGoogle Scholar
  65. 65.
    Y. Hu, P. R. Norton, K. Griffith, J. Vac. Sci. Technol. A, 2007, 25, 645.CrossRefGoogle Scholar
  66. 66.
    N. C. Yee, G. S. Chottiner, D. A. Scherson, J. Phys. Chem. B, 2005, 109, 7610.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.G. K. Boreskov Institute of CatalysisSiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations