Advertisement

Russian Chemical Bulletin

, Volume 64, Issue 9, pp 2125–2134 | Cite as

Features of self-organization of highly dilute solutions of (S)-, (R)-, and (SR)-methionines and related carbamides and glycolurils

  • I. S. Ryzhkina
  • S. Yu. Sergeeva
  • E. M. Masagutova
  • L. I. Murtazina
  • O. A. Mishina
  • A. P. Timosheva
  • V. V. Baranov
  • A. N. Kravchenko
  • A. I. Konovalov
Full Articles

Abstract

Aqueous solutions of (S)-, (R)-, and (SR)-methionines (1–3); carbamide (4); (S)-, (R)-, and (SR)-N-carbamoylmethionines (5–7); glycoluril (8); and glycolurils containing (S)and (R)-methionine moieties (9 and 10) kept under natural and hypoelectromagnetic conditions were studied in comparison by a complex of physicochemical methods (dynamic and electrophoretic light scattering, conductometry, pH-metry, and dielcometry). The process of selforganization and the properties of dilute solutions (1.0•10–15–10–1 mol L–1) of compounds 110 was shown for the first time to depend substantially on the structure of the solute and configuration of methionine (Met) enantiomers. In the series 13, the greatest ability to self-organization is observed for solutions of (SR)-Met in which supramolecular domains (1.0•10–5–1.0•10–1 mol L–1) and nanoassociates (1.0•10–11–1.0•10–8 mol L–1) are formed. The formation of nanoassociates in a concentration range of 1.0•10–12–1.0•10–6 mol L–1 can be responsible for the appearance of nonmonotonic concentration dependences of the physicochemical properties of solutions of N-carbamoylmethionines 57, whereas the physicochemical properties are more pronounced in solution of (S)-N-carbamoylmethionine 5 than in solutions of 6 and 7. The strongest influence of the configuration of the Met enantiomer on the ability of solution to self-organization was revealed in a series of glycolurils 9, 10: solutions of 9 with the (S)-Met moiety are disperse systems in which nanoassociates are formed in a range of 1.0•10–15–1.0•10–5 mol L–1, whereas in solutions of 10 with the (R)-Met fragment the ability to self-organization in the low-concentration range is absent.

Key words

self-organization physicochemical properties highly dilute aqueous solutions (S)-, (R)-, and (SR)-methionines methionine derivatives of carbamide and glycoluril 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. B. Burlakova, A. A. Konradov, E. L. Mal´tseva, Khim. Fiz. [Chemical Physics], 2003, 22, No. 2, 21 (in Russian).Google Scholar
  2. 2.
    I. P. Ashmarin, E. P. Karazeeva, T. V. Lelekova, Zh. Vsesoyuz. Khim. o-va im. D. I. Mendeleeva, 1999, 43, No. 5, 21 [Mendeleev Chem. J. (Engl. Transl.), 1999, 43, No. 5].Google Scholar
  3. 3.
    Hormesis: a Revolution in Biology, Toxicology and Medicine, Springer, New York, 2009.Google Scholar
  4. 4.
    N. P. Pal´mina, E. L. Mal´tseva, E. I. Pynzar´, E. B. Burlakova, Zh. Vsesoyuz. Khim. o-va im. D. I. Mendeleeva, 1999, 43, No. 5, 55 [Mendeleev Chem. J. (Engl. Transl.), 1999, 43, No. 5].Google Scholar
  5. 5.
    N. L. Shimanovskii, M. A. Epinetov, M. Ya. Melńikov, Molekulyarnaya i nanofarmakologiya [Molecular and Nanopharmacology], Fizmatlit, Moscow, 2010, 624 pp. (in Russian).Google Scholar
  6. 6.
    V. V. Bulatov, T. Kh. Khokhoev, V. V. Dikii, S. V. Zaonegin, V. N. Babin, Zh. Vsesoyuz. Khim. o-va im. D. I. Mendeleeva, 2002, 46, No. 6, 58 [Mendeleev Chem. J. (Engl. Transl.), 2002, 46, No. 6].Google Scholar
  7. 7.
    E. S. Ikhalainen, S. E. Kondakov, M. Ya. Melńikov, O. S. Prokoptseva, K. G. Fedorenko, III Emanuelevskie chteniya "Okislenie, okislitelńyi stress i antioksidanty" [III Emanuel Readings "Oxidation, Oxidative Stress, and Antioxidants"], RUDN, Moscow, 2010, 226 pp. (in Russian).Google Scholar
  8. 8.
    I. S. Ryzhkina, L. I. Murtazina, Yu. V. Kiseleva, A. I. Konovalov, Dokl. Phys. Chem. (Engl. Transl.), 2009, 428, 196 [Dokl. Akad. Nauk, 2009, 428, 487].CrossRefGoogle Scholar
  9. 9.
    I. S. Ryzhkina, L. I. Murtazina, A. I. Konovalov, Dokl. Phys. Chem. (Engl. Transl.), 2011, 440, 201 [Dokl. Akad. Nauk, 2011, 440, 778].CrossRefGoogle Scholar
  10. 10.
    A. I. Konovalov, I. S. Ryzhkina, Russ. Chem. Bull. (Int. Ed.), 2014, 60, 1 [Izv. Akad. Nauk, Ser. Khim., 2014, 1].CrossRefGoogle Scholar
  11. 11.
    I. S. Ryzhkina, Yu. V. Kiseleva, O. A. Mishina, L. I. Murtazina, A. I. Litvinov, M. K. Kadirov, A. I. Konovalov, Russ. Chem. Bull. (Int. Ed.), 2015, 64, 579 [Izv. Akad. Nauk, Ser. Khim., 2015, 579].CrossRefGoogle Scholar
  12. 12.
    I. S. Ryzhkina, Yu. V. Kiseleva, A. P. Timosheva, R. A. Safiullin, M. K. Kadirov, Yu. N. Valitova, A. I. Konovalov, Dokl. Phys. Chem. (Engl. Transl.), 2012, 447, 193 [Dokl. Akad. Nauk, 2012, 447, 56].CrossRefGoogle Scholar
  13. 13.
    I. S. Ryzhkina, L. I. Murtazina, E. D. Sherman, M. E. Pantyukova, E. M. Masagutova, T. P. Pavlova, S. V. Fridland, A. I. Konovalov, Dokl. Phys. Chem. (Engl. Transl.), 2011, 438, 98 [Dokl. Akad. Nauk, 2011, 438, 207].CrossRefGoogle Scholar
  14. 14.
    I. S. Ryzhkina, Yu. V. Kiseleva, O. A. Mishina, A. P. Timosheva, S. Yu. Sergeeva, A. N. Kravchenko, A. I. Konovalov, Mendeleev Commun., 2013, 23, 262.CrossRefGoogle Scholar
  15. 15.
    A. I. Konovalov, E. L. Mal´tseva, I. S. Ryzhkina, L. I. Murtazina, Yu. V. Kiseleva, V. V. Kasparov, N. P. Pal´mina, Dokl. Phys. Chem. (Engl. Transl.), 2014, 456, 86 [Dokl. Akad. Nauk, 2014, 456, 561].CrossRefGoogle Scholar
  16. 16.
    I. S. Ryzhkina, Yu. V. Kiseleva, L. I. Murtazina, O. A. Mishina, A. P. Timosheva, S. Yu. Sergeeva, V. V. Baranov, A. N. Kravchenko, A. I. Konovalov, Mendeleev Commun., 2015, 25, 72.CrossRefGoogle Scholar
  17. 17.
    M. Sedlak, J. Phys. Chem. B, 2006, 110, 4329.CrossRefGoogle Scholar
  18. 18.
    D. Subramanian, M. A. Anisimov, J. Phys. Chem. B, 2011, 115, 9179.CrossRefGoogle Scholar
  19. 19.
    P. Bharmoria, H. Gupta, V. P. Mohandas, P. K. Ghosh, A. Kumar, J. Phys. Chem. B, 2012, 116, 11712.CrossRefGoogle Scholar
  20. 20.
    D. Hagmeyer, J. Ruesing, T. Fenske, H.-W. Klein, C. Schmuck, W. Schrader, M. E. M. da Piedade, M. Epple, RSC Adv., 2012, 2, 4690.CrossRefGoogle Scholar
  21. 21.
    M. Sedlak, D. Rak, J. Phys. Chem. B, 2013, 117, 2495.CrossRefGoogle Scholar
  22. 22.
    H. D. Yakubke, H. Yescheit, Aminosauren, Peptide, Proteine, Akademie-Verlag, Berlin, 1981.Google Scholar
  23. 23.
    Sh. Lo, V. Li, Zh. Vsesoyuz. Khim. o-va im. D. I. Mendeleeva, 1999, 43, No. 5, 40 [Mendeleev Chem. J. (Engl. Transl.), 1999, 43, No. 5].Google Scholar
  24. 24.
    A. L. Peshekhonova, A. M. Kontorov, F. R. Chernikov, Zhurnal nauchnykh publikatsii aspirantov i doktorantov [J. of Scientific Publications of Post-graduates and Doctorants], 2006, No. 7; http://jurnal.org/articles/2006/ chem2.html (in Russian).Google Scholar
  25. 25.
    O. Lutz, M. Vrachopoulou, M. Groves, J. Pharm. Pharmacol., 1994, 46, 698.CrossRefGoogle Scholar
  26. 26.
    N. Yu. Butavin, G. M. Zubareva, Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education], 2013, 3; www.science-education.ru/109-9204 (in Russian).Google Scholar
  27. 27.
    G. Kubiní, Zh. Vsesoyuz. Khim. o-va im. D. I. Mendeleeva, 2006, 50, No. 2, 5 [Mendeleev Chem. J. (Engl. Transl.), 2006, 50, No. 2].Google Scholar
  28. 28.
    A. E. Sorochinsky, H. Ueki, J. Luis Aceca, T. K. Ellis, H. Moriwaki, T. Satof, V. A. Soloshonok, Org. Biomol. Chem., 2013, 11, 4503.CrossRefGoogle Scholar
  29. 29.
    M. D. Mashkovskii, Lekarstvennye sredstva [Medicinal Compounds], Novaya Volna, Moscow, 2008, 666 pp. (in Russian).Google Scholar
  30. 30.
    K. J. Printen, M. C. Brummel, Ei S. Cho, L. D. Stegink, Am. J. Clin. Nutrition, 1979, 32, 1200.Google Scholar
  31. 31.
    K. D. Korver, L. P. Rybak, C. Whitworth, K. M. Campbell, Otolaryngology–Head and Neck Surgery, 2002, 126, No. 6, 683.CrossRefGoogle Scholar
  32. 32.
    K. M. Campbell, R. P. Meech, J. J. Klemens, M. T. Gerberi, S. W. Dyrstad, D. L. Larsen, D. L. Mitchell, M. ElAzizi, S. J. Verhulst, L. F. Hughes, Hearing Res., 2007, 226, 92.CrossRefGoogle Scholar
  33. 33.
    A. N. Kravchenko, V. V. Baranov, L. V. Anikina, Yu. B. Vikharev, I. S. Bushmarinov, Yu. V. Nelyubina, Russ. J. Bioorg. Chem. (Engl. Transl.), 2012, 38, 550 [Bioorg. Khim., 2012, 38, 621].CrossRefGoogle Scholar
  34. 34.
    A. N. Kravchenko, K. A. Lyssenko, I. E. Chikunov, P. A. Belyakov, M. M. Ilín, V. V. Baranov, Yu. V. Nelyubina, V. A. Davankov, T. S. Pivina, N. N. Makhova, M. Yu. Antipin, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 395 [Izv. Akad. Nauk, Ser. Khim., 2009, 390].CrossRefGoogle Scholar
  35. 35.
    A. N. Kravchenko, K. Yu. Chegaev, I. E. Chikunov, P. A. Belyakov, E. Yu. Maksareva, K. A. Lyssenko, O. V. Lebedev, N. N. Makhova, Mendeleev Commun., 2003, 269.Google Scholar
  36. 36.
    I. E. Chikunov, A. N. Kravchenko, P. A. Belyakov, K. A. Lyssenko, V. V. Baranov, O. V. Lebedev, N. N. Makhova, Mendeleev Commun., 2004, 253.Google Scholar
  37. 37.
    D. B. Melville, J. Biol. Chem., 1947, 169, 419.Google Scholar
  38. 38.
    Biologicheski aktivnye veshchestva v rastvorakh: struktura, termodinamika, reaktsionnaya sposobnost´ [Biologically Active Substances in Solutions: Structures, Thermodynamics, and Reactivity], Ed. A. M. Kutepov, Nauka, Moscow, 2001, 403 pp. (in Russian).Google Scholar
  39. 39.
    E. L. Eliel, S. H. Wilen, Basic Organic Stereochemistry, WileyIntersience, New York, 2001, 688 pp.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • I. S. Ryzhkina
    • 1
  • S. Yu. Sergeeva
    • 1
  • E. M. Masagutova
    • 1
  • L. I. Murtazina
    • 1
  • O. A. Mishina
    • 1
  • A. P. Timosheva
    • 1
  • V. V. Baranov
    • 2
  • A. N. Kravchenko
    • 2
  • A. I. Konovalov
    • 1
  1. 1.A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazanRussian Federation
  2. 2.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations