Advertisement

Russian Chemical Bulletin

, Volume 64, Issue 3, pp 551–557 | Cite as

Calculations of 29Si NMR shifts of organylsilanes by DFT taking into account solvent effects and relativistic corrections

  • S. V. Fedorov
  • Yu. Yu. Rusakov
  • L. B. Krivdin
Full Articles

Abstract

The accuracy of calculations of the 29Si NMR chemical shifts of organylsilanes with different hybridization of C atoms in the substituents at the Si atom (sp3, sp2, and sp) was analyzed on the basis of the effective calculation scheme in terms of the density functional theory using the KT3 functional in combination with the ?-polarization consistent basis set pcS-3. Taking into account the influence of the medium in terms of the supermolecular solvate model and relativistic effects based on the full four-component Dirac scheme made it possible to achieve the extremely high accuracy of calculations of 29Si NMR chemical shifts of organylsilanes: 1 ppm for a span of 100 ppm. The contributions of solvent, relativistic, and vibrational corrections for the 29Si NMR chemical shifts are 3, 1, and 1 ppm, respectively, and taking them into account noticeably improves the agreement of calculation results with experiment. The relativistic shielding contribution to the absolute shielding constant of the Si atom is 12—13 ppm on the average, i.e., to ca. 3% in the relative expression.

Key words

29Si NMR spectroscopy DFT/GIAO/KT3/pcS-3 solvent effect supermolecular solvate model chemical shift absolute shielding constant vibrational corrections relativistic effects organosilicon compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. A. Mulder, M. Filatov, Chem. Soc. Rev., 2010, 39, 578.CrossRefGoogle Scholar
  2. 2.
    T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, K. Ruud, Chem. Rev., 2012, 112, 543.CrossRefGoogle Scholar
  3. 3.
    J. Autschbach, Relativistic Effects on NMR Parameters, in High Resolution NMR Spectroscopy — Understanding Molecules and their Electronic Structures, Vol. 3, Ed. R. H. Contreras, Elsevier B. V., The Netherlands, 2013, p. 69.Google Scholar
  4. 4.
    S. V. Fedorov, Yu. Yu. Rusakov, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2014, 50, 160 [Zh. Org. Khim., 2014, 50, 172]CrossRefGoogle Scholar
  5. 4a.
    S. V. Fedorov, Yu. Yu. Rusakov, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2014, 50, 1082 [Zh. Org. Khim., 2014, 50, 1102].CrossRefGoogle Scholar
  6. 5.
    K. A. Chernyshev, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2012, 48, 1518 [Zh. Org. Khim., 2012, 48, 1547]CrossRefGoogle Scholar
  7. 5a.
    K. A. Chernyshev, B. A. Gostevskii, A. I. Albanov, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2013, 49, 34 [Zh. Org. Khim., 2013, 49, 44]CrossRefGoogle Scholar
  8. 5b.
    K. A. Chernyshev, B. A. Gostevskii, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2013, 49, 832 [Zh. Org. Khim., 2013, 49, 849].CrossRefGoogle Scholar
  9. 6.
    K. A. Chernyshev, V. A. Semenov, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2013, 49, 379 [Zh. Org. Khim., 2013, 49, 392]CrossRefGoogle Scholar
  10. 6a.
    V. A. Semenov, D. O. Samul´tsev, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2014, 50, 381 [Zh. Org. Khim., 2014, 50, 392]CrossRefGoogle Scholar
  11. 6b.
    V. A. Semenov, D. O. Samultsev, L. B. Krivdin, Magn. Reson. Chem., 2014, 52, 686CrossRefGoogle Scholar
  12. 6c.
    D. O. Samultsev, V. A. Semenov, L. B. Krivdin, Magn. Reson. Chem., 2014, 52, 222.CrossRefGoogle Scholar
  13. 7.
    K. A. Chernyshev, L. I. Larina, E. A. Chirkina, L. B. Krivdin, Magn. Reson. Chem., 2012, 50, 120–127CrossRefGoogle Scholar
  14. 7a.
    S. V. Fedorov, Yu. Yu. Rusakov, L. B. Krivdin, Magn. Reson. Chem., 2014, 52, 699.CrossRefGoogle Scholar
  15. 8.
    R. Ditchfield, J. Chem. Phys., 1972, 56, 5688CrossRefGoogle Scholar
  16. 8a.
    R. Ditchfield, Mol. Phys., 1974, 27, 789CrossRefGoogle Scholar
  17. 8b.
    J. L. Dodds, R. McWeeny, A. J. Sadlej, Mol. Phys., 1980, 41, 1419CrossRefGoogle Scholar
  18. 8c.
    K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251.CrossRefGoogle Scholar
  19. 9.
    T. W. Keal, D. J. Tozer, J. Chem. Phys., 2004, 121, 5654.CrossRefGoogle Scholar
  20. 10.
    F. Jensen, T. Helgaker, J. Chem. Phys., 2004, 121, 3462CrossRefGoogle Scholar
  21. 10a.
    F. Jensen, J. Chem. Theor. Comp., 2008, 4, 719.CrossRefGoogle Scholar
  22. 11.
    F. Jensen, J. Chem. Phys., 2001, 115, 9113.CrossRefGoogle Scholar
  23. 12.
    T. H. Dunning, Jr., J. Chem. Phys., 1989, 90, 1007CrossRefGoogle Scholar
  24. 12a.
    D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys., 1993, 98, 1358CrossRefGoogle Scholar
  25. 12b.
    A. K. Wilson, D. E. Woon, K. A. Peterson, T. H. Dunning, Jr., J. Chem. Phys., 1999, 110, 7667.CrossRefGoogle Scholar
  26. 13.
    K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Høttig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jörgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. Sánchez de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, H. Ågren, tiDALTON, a Molecular Electronic Structure Program, Release DALTON2013.1 (2013), {The Dalton Quantum Chemistry Program System, WIREs Comput. Mol. Sci.}, 2014, 4, 269–284; http://daltonprogram.org.Google Scholar
  27. 14.
    L. Visscher, H. J. Aa. Jensen, R. Bast, T. Saue, V. Bakken, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, E. Faαhauer, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. K. Lærdahl, Y. S. Lee, J. Henriksson, M. Iliaš, Ch. R. Jacob, S. Knecht, S. Komorovský, O. Kullie, C. V. Larsen, H. S. Nataraj, P. Norman, G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, K. Ruud, P. Sałek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, S. Yamamoto, DIRAC, a Relativistic ab initio Electronic Structure Program, Release DIRAC13 (2013); http://www.diracprogram.org.Google Scholar
  28. 15.
    J.-M. Lévy-Leblond, Commun. Math. Phys., 1967, 6, 286.CrossRefGoogle Scholar
  29. 16.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, GAMESS (US), a General Atomic and Molecular Electronic Structure System, Release R.1 (2013), J. Comp. Chem., 1993, 14, 1347.Google Scholar
  30. 17.
    J. Tomasi, B. Mennucci, E. Cancès, THEOCHEM, 1999, 464, 211CrossRefGoogle Scholar
  31. 17a.
    J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.CrossRefGoogle Scholar
  32. 18.
    A. A. Auer, J. Gauss, J. F. Stanton, J. Chem. Phys., 2003, 118, 10407.CrossRefGoogle Scholar
  33. 19.
    J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O´Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts, CFOUR, a Quantum Chemical Program Package, The Integral Packages MOLECULE (J. Almlöf, P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen), and ECP routines (A. V. Mitin, C. van Wüllen); http://www.cfour.de.Google Scholar
  34. 20.
    E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys., 1993, 99, 4597CrossRefGoogle Scholar
  35. 20a.
    E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys., 1994, 101, 9783CrossRefGoogle Scholar
  36. 20b.
    E. van Lenthe, A. E. Ehlers, E. J. Baerends, J. Chem. Phys., 1999, 110, 8943.CrossRefGoogle Scholar
  37. 21.
    C. J. Jameson, A. K. Jameson, Chem. Phys. Lett., 1988, 149, 300.CrossRefGoogle Scholar
  38. 22.
    J. Hahn, Z. Naturforsch., 1980, 35b, 282.Google Scholar
  39. 23.
    R. Löwer, M. Vongehr, H. C. Marsmann, J. Prakt. Chem., 1975, 99, 33.Google Scholar
  40. 24.
    G. A. Olah, R. J. Hunadi, J. Am. Chem. Soc., 1980, 102, 6989.CrossRefGoogle Scholar
  41. 25.
    M. Grignon-Dubois, M. Laguerre, Organometallics, 1988, 7, 1443.CrossRefGoogle Scholar
  42. 26.
    C. Dallaire, M. A. Brook, A. D. Bain, C. S. Frampton, J. F. Britten, Can. J. Chem., 1993, 71, 1676.CrossRefGoogle Scholar
  43. 27.
    H. C. Marsmann, J. Prakt. Chem., 1972, 96, 288.Google Scholar
  44. 28.
    H. Sakurai, Y. Kamiyama, A. Mikoda, T. Kobayashi, K. Sasaki, Y. Nakadaira, J. Organomet. Chem., 1980, 201, 14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. V. Fedorov
    • 1
  • Yu. Yu. Rusakov
    • 1
  • L. B. Krivdin
    • 1
  1. 1.A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of SciencesIrkutskRussian Federation

Personalised recommendations