Advertisement

Russian Chemical Bulletin

, Volume 64, Issue 1, pp 181–188 | Cite as

Controlled homoand copolymerization of ε-caprolactone and d,l-lactide in the presence of TiIV complexes

  • Yu. A. Piskun
  • I. V. Vasilenko
  • K. V. Zaitsev
  • S. S. Karlov
  • G. S. Zaitseva
  • L. V. Gaponik
  • S. V. Kostjuk
Full Articles

Abstract

Titanium complexes with dialkanolamine (1, 2) and salen ligands (3), as well as titanium alkoxide containing two fragments of an unsaturated alcohol (cis-but-2-ene-1,4-diol) asε-ligands (4), were studied in the anionic ring-opening bulk polymerization of ɛ-caprolactone (CL) at 80–130 °,C. All the catalysts involved initiate controlled polymerization and afford polyesters with a number-average molecular weight up to Mn = 20 000 g mol−1, which can be regulated by adjusting the [monomer]: [catalyst] ratio. Among the catalysts studied, complex 2 is most efficient in CL polymerization and affords polyesters with the narrowest molecular weight distribution (Mw/Mn < 1.2). In addition, complex 2 initiates the controlled polymerization of d,l-lactide (LA) and is effective in the synthesis of random and block copolymers of CL and LA.

Keywords

biodegradable polymers ε-caprolactone d,l-lactide titanium complexes controlled polymerization ring-opening polymerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Gupta, V. Kumar, Eur. Polym. J., 2007, 43, 4053.CrossRefGoogle Scholar
  2. 2.
    S. Penczek, M. Cypryk, A. Duda, P. Kubisa, S. Siomkowski, Prog. Polym. Sci., 2007, 32, 247.CrossRefGoogle Scholar
  3. 3.
    A. C. Albertsson, I. K. Varma, Biomacromolecules, 2003, 4, 1466.CrossRefGoogle Scholar
  4. 4.
    D. Mecerreyes, R. Jerome, P. Dubois, Adv. Polym. Sci., 1999, 147, 1.CrossRefGoogle Scholar
  5. 5.
    M. A. Woodruff, D. W. Hutmacher, Prog. Polym. Sci., 2010, 35, 1217.CrossRefGoogle Scholar
  6. 6.
    J.-M. Raquez, Y. Habibi, M. Murariu, P. Dubois, Prog. Polym. Sci., 2013, 38, 1504.CrossRefGoogle Scholar
  7. 7.
    O. E. Teebken, A. Haverich, Eur. J. Vasc., Endovasc. Surg., 2002, 23, 475.CrossRefGoogle Scholar
  8. 8.
    M. S. Kim, K. S. Seo, G. Khang, S. H. Cho, H. B. Lee, J. Biomed. Mater. Res., 2004, 70A, 154.CrossRefGoogle Scholar
  9. 9.
    L. S. Nair, C. T. Laurencin, Prog. Polym. Sci., 2007, 32, 762.CrossRefGoogle Scholar
  10. 10.
    P. Olsen, T. Borke, K. Odelius, A.-C. Albertsson, Biomacromolecules, 2013, 14, 2883.CrossRefGoogle Scholar
  11. 11.
    O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev., 2004, 104, 6147.CrossRefGoogle Scholar
  12. 12.
    R. A. Gross, B. Kalra, Science, 2002, 297, 803.CrossRefGoogle Scholar
  13. 13.
    R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater., 2002, 12, 1841.CrossRefGoogle Scholar
  14. 14.
    D. J. Darensbourg, O. Karroonnirun, Macromolecules, 2010, 43, 8880.CrossRefGoogle Scholar
  15. 15.
    D. W. Grijpma, G. J. Zondervan, A. J. Pennings, Polym. Bull., 1991, 25, 327.CrossRefGoogle Scholar
  16. 16.
    J.-L. Wang, J.-L. Dong, Macromol. Chem. Phys., 2006, 207, 554.CrossRefGoogle Scholar
  17. 17.
    Y. Baimark, R. Molloy, Polym. Adv. Technol., 2005, 16, 332.CrossRefGoogle Scholar
  18. 18.
    P. Li, A. Zerroukhi, J. Chen, Y. Chalamet, T. Jeanmaire, Z. Xia, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 7773.CrossRefGoogle Scholar
  19. 19.
    P. Li, A. Zerroukhi, J. Chen, Y. Chalamet, T. Jeanmaire, Z. Xia, Polymer, 2009, 50, 1109.CrossRefGoogle Scholar
  20. 20.
    J.-B. Fan, F. Long, M. P. Aldred, Y.-J. Li, Z.-W. Liang, M.-Q. Zhu, Macromol. Chem. Phys., 2012, 213, 1499.CrossRefGoogle Scholar
  21. 21.
    J. Chen, L. L. Gorczynski, C. L. Fraser, Macromol. Chem. Phys., 2010, 211, 1272.CrossRefGoogle Scholar
  22. 22.
    H. R. Kricheldorf, H. Hachmann-Thiessen, Macromol. Chem. Phys., 2005, 206, 758.CrossRefGoogle Scholar
  23. 23.
    A. S. Karikari, W. F. Edwards, J. B. Mecham, T. E. Long, Biomacromolecules, 2005, 6, 2866.CrossRefGoogle Scholar
  24. 24.
    N. Ding, B. Shentu, P. Pan, G. Shan, Y. Bao, Z. Weng, Ind. Eng. Chem. Res., 2013, 52, 12897.CrossRefGoogle Scholar
  25. 25.
    W. Yuan, J. Yuan, F. Zhang, X. Xie, Biomacromolecules, 2007, 8, 1101.CrossRefGoogle Scholar
  26. 26.
    S. Theiler, M. Teske, H. Keul, K. Sternbergand, M. Möller, Polym. Chem., 2010, 1, 1215.CrossRefGoogle Scholar
  27. 27.
    A. Kowalski, A. Duda, S. Penczek, Macromol. Rapid Commun., 1998, 19, 567.Google Scholar
  28. 28.
    R. F. Storey, J. W. Sherman, Macromolecules, 2002, 35, 1504.CrossRefGoogle Scholar
  29. 29.
    H. R. Kricheldorf, I. Kreiser-Saunders, A. Stricker, Macromolecules, 2000, 33, 702.CrossRefGoogle Scholar
  30. 30.
    G. Deshayes, F. A. G. Mercier, P. Degée, I. Verbruggen, M. Biesemans, R. Willem, P. Dubois, Chem. Eur. J., 2003, 9, 4346.CrossRefGoogle Scholar
  31. 31.
    A. Kowalski, J. Libiszowski, A. Duda, S. Penczek, Macromolecules, 2000, 33, 1964.CrossRefGoogle Scholar
  32. 32.
    W. Yao, Y. Mu, A. Gao, Q. Su, Y. Liu, Y. Zhang, Polymer, 2008, 49, 2486.CrossRefGoogle Scholar
  33. 33.
    D. Pappalardo, L. Annunziata, C. Pellecchia, Macromolecules, 2009, 42, 6056.CrossRefGoogle Scholar
  34. 34.
    T. M. Ovitt, G. W. Coates, J. Am. Chem. Soc., 1999, 121, 4072.CrossRefGoogle Scholar
  35. 35.
    T. M. Ovitt, G. W. Coates, J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 4686.CrossRefGoogle Scholar
  36. 36.
    A. Pilone, K. Press, I. Goldberg, M. Kol, M. Mazzeo, M. Lamberti, J. Am. Chem. Soc., 2014, 136, 1940.CrossRefGoogle Scholar
  37. 37.
    N. Nomura, A. Akita, R. Ishii, M. Mizuno, J. Am. Chem. Soc., 2010, 132, 1750.CrossRefGoogle Scholar
  38. 38.
    K. V. Zaitsev, Yu. A. Piskun, Y. F. Oprunenko, S. S. Karlov, G. S. Zaitseva, I. V. Vasilenko, A. V. Churakov, S. V. Kostjuk, J. Polym. Sci., Part A: Polym. Chem., 2014, 52, 1237.CrossRefGoogle Scholar
  39. 39.
    H. R. Kricheldorf, Chem. Rev., 2009, 109, 5579.CrossRefGoogle Scholar
  40. 40.
    J. Kasperczyk, M. Bero, Polymer, 2000, 41, 391.CrossRefGoogle Scholar
  41. 41.
    F. Drouin, P. O. Oguadinma, T. J. Whitehorne, R. E. Prud’homme, F. Schaper, Organometallics, 2010, 29, 2139.CrossRefGoogle Scholar
  42. 42.
    H.-Y. Chen, H.-Y. Tang, C.-C. Lin, Macromolecules, 2006, 39, 3745.CrossRefGoogle Scholar
  43. 43.
    Y. Huang, W.-Ch. Hung, M.-Y. Liao, T.-E. Tsai, Y.-L. Peng, Ch.-Ch. Lin, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 2318.CrossRefGoogle Scholar
  44. 44.
    M. Oshimura, A. Takasu, Macromolecules, 2010, 43, 2283.CrossRefGoogle Scholar
  45. 45.
    C. Miola-Delaite, T. Hamaide, R. Spitz, Macromol. Chem. Phys., 1999, 200, 1771.CrossRefGoogle Scholar
  46. 46.
    V. Simic, N. Spassky, L. G. Hubert-Pfalzgraf, Macromolecules, 1997, 30, 7338.Google Scholar
  47. 47.
    A. Amgoune, C. M. Tomas, J.-F. Carpentier, Macromol. Rapid Commun., 2007, 28, 693.CrossRefGoogle Scholar
  48. 48.
    Y. Kim, J. G. Verkade, Macromol. Symp., 2005, 224, 105.CrossRefGoogle Scholar
  49. 49.
    Y. Kim, J. G. Verkade, Macromol. Rapid Commun., 2002, 23, 917.CrossRefGoogle Scholar
  50. 50.
    D. Takeuchi, T. Nokamura, T. Aida, Macromolecules, 2000, 33, 4608.Google Scholar
  51. 51.
    A. D. Asandei, G. Saha, Macromol. Rapid Commun., 2005, 26, 626.CrossRefGoogle Scholar
  52. 52.
    S. Park, Y. S. Chi, I. S. Choi, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 3711.CrossRefGoogle Scholar
  53. 53.
    F. Gornshtein, M. Kapon, M. Botoshansky, M. S. Eisen, Organometallics, 2007, 26, 497.CrossRefGoogle Scholar
  54. 54.
    P. S. Umare, G. L. Tembe, K. V. Rao, U. S. Satpathy, B. Trivedi, J. Mol. Catal. A: Chem., 2007, 268, 235.CrossRefGoogle Scholar
  55. 55.
    D. Takeuchi, T. Nokamura, T. Aida, Macromolecules, 2000, 33, 725.CrossRefGoogle Scholar
  56. 56.
    Y. Kim, J. G. Verkade, Organometallics, 2002, 21, 2395.CrossRefGoogle Scholar
  57. 57.
    D. Dakshinamoorthy, F. Peruch, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 5176.CrossRefGoogle Scholar
  58. 58.
    K. V. Zaitsev, S. S. Karlov, A. A. Selina, Yu. F. Oprunenko, A. V. Churakov, B. Neumüller, J. A. K. Howard, G. S. Zaitseva, Eur. J. Inorg. Chem., 2006, 10, 1987.CrossRefGoogle Scholar
  59. 59.
    I. V. Vasilenko, S. V. Kostjuk, K. V. Zaitsev, P. M. Nedorezova, D. A. Lemenovskii, S. S. Karlov, Polym. Sci., Ser. B (Engl. Transl.), 2010, 52, 136 [Vysokomol. Soedin., Ser. B, 2010, 52, 506].CrossRefGoogle Scholar
  60. 60.
    K. V. Zaitsev, A. O. Kudlaev, S. S. Karlov, A. V. Churakov, S. V. Kostjuk, G. S. Zaitseva, Tezisy dokladov XXV Mezhdunarodnoi Chugaevskoi konferentsii po koordinatsionnoi khimii [Abstrs, XXV Chugaev Int. Conf. on Coordination Chemistry] (June 6–11, 2011, Suzdal), Institute of Solution Chemistry of the Russian Academy of Sciences, Suzdal, 2011, p. 389 (in Russian).Google Scholar
  61. 61.
    K. V. Zaitsev, M. V. Bermeshev, A. A. Samsonov, Y. F. Oprunenko, A. V. Churakov, J. A. K. Howard, S. S. Karlov, G. S. Zaitseva, New J. Chem., 2008, 32, 1415.CrossRefGoogle Scholar
  62. 62.
    H. Chen, P. S. White, M. R. Gagne, Organometallics, 1998, 17, 5358.CrossRefGoogle Scholar
  63. 63.
    A. Tsubery, E. Y. Tshuva, Inorg. Chem., 2012, 51, 1796.CrossRefGoogle Scholar
  64. 64.
    E. F. DiMauro, A. Mamai, M. C. Kozlowski, Organometallics, 2003, 22, 850.CrossRefGoogle Scholar
  65. 65.
    K. V. Zaitsev, S. S. Karlov, G. S. Zaitseva, E. Kh. Lermontova, A. V. Churakov, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2013, 69, 626.CrossRefGoogle Scholar
  66. 66.
    Y. A. Piskun, I. V. Vasilenko, S. V. Kostjuk, K. V. Zaitsev, G. S. Zaitseva, S. S. Karlov, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 1230.CrossRefGoogle Scholar
  67. 67.
    D. Dakshinamoorthy, F. Peruch, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 2161.CrossRefGoogle Scholar
  68. 68.
    W. Lin, G.-L. Dou, M.-H. Hu, C.-P. Cao, Z.-B. Huang, D.-Q. Shi, Org. Lett., 2013, 15, 1238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yu. A. Piskun
    • 1
  • I. V. Vasilenko
    • 1
  • K. V. Zaitsev
    • 2
  • S. S. Karlov
    • 2
  • G. S. Zaitseva
    • 2
  • L. V. Gaponik
    • 1
  • S. V. Kostjuk
    • 1
  1. 1.Research Institute for Physical Chemical Problems of the Belarusian State UniversityMinskRepublic of Belarus
  2. 2.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations