Russian Chemical Bulletin

, Volume 63, Issue 8, pp 1807–1814 | Cite as

On the earlier unknown regularities of oxidation of ferrocene and its derivatives by hydrogen peroxide in water and organic solvents

Full Articles


The oxidation of ferrocene and its derivatives (Fc) by hydrogen peroxide in an acidic medium was studied by electron spectroscopy in the visible region. The studied reaction of different Fc includes steps of their oxidation to the ferrocenium cation Fc+ formed in a pair with radical HO· and also the earlier unknown reactions of this cation with hydrogen peroxide and with hydroxyl radical. The first reaction proceeds as a redox process leading to the reduction of the ferrocenium cation to neutral ferrocene, and the second reaction follows the mechanism of radical substitution with the consecutive formation of the hydroxy derivatives of ferrocene Fc(OH) x and the corresponding ferrocenium cations with different contents of OH substituents. The necessary conditions for the second reaction to occur is an excessive concentration of hydrogen peroxide over the Fc concentration. The external manifestation of this process is a continuous shift of the absorption band of the ferrocenium cation to the long-wavelength range of the electronic spectrum, which can attain several tens of nanometers, and its broadening. The contribution of these reactions to the overall process of ferrocene oxidation can be made minimum and reduced to the ferrocenium cation formation only by decreasing the ratio of the initial concentrations C 0(H2O2)/C 0(Fc).

Key words

ferrocene peroxides ferrocenium cation reaction mechanism hydroxy derivatives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Fomin, Koord. Khim., 1996, 22, 125 [Russ. J. Coord. Chem. (Engl. Transl.), 1996, 22, No. 2].Google Scholar
  2. 2.
    Metody elementorganicheskoi khimii. Zhelezoorganicheskie soedineniya [Methods of Organoelement Chemistry. Organoiron Compounds], Eds A. N. Nesmeyanov, K. A. Kocheshkov, Nauka, Moscow, 1983, p. 135 (in Russian).Google Scholar
  3. 3.
    J. Lubach, W. Drenth, Rec. trav. Chim., 1973, 92, 586.CrossRefGoogle Scholar
  4. 4.
    A. J. Beckwitt, R. J. Leydon, Tetrahedron, 1964, 20, 791.CrossRefGoogle Scholar
  5. 5.
    G. B. Shul’pin, M. V. Kirillova, L. S. Shul’pina, A. J. L. Pombeiro, E. E. Karslyan, Y. N. Kozlov, Catal. Commun., 2013, 31, 32.CrossRefGoogle Scholar
  6. 6.
    L. S. Shul’pina, E. L. Durova, Yu. N. Kozlov, A. R. Kudinov, T. V. Strelkova, G. B. Shul’pin, Russ. J. Phys. Chem. (Engl. Transl.), 2013, 87 [Zh. Fiz. Khim., 2013, 87, 2029].Google Scholar
  7. 7.
    V. M. Fomin, A. A. Terekhina, K. S. Zaitseva, Russ. J. Gen. Chem. (Engl. Transl.), 2013, 83, 2324–2330 [Zh. Obshch. Khim., 2013, 83, 2041].CrossRefGoogle Scholar
  8. 8.
    O. N. Emmanuel’, I. P. Skibida, Tez. dokl. Shestoi vsesoyuz. konf. po khimii organicheskikh perekisnykh soedinenii [Proc. Sixth All-Union Conference on Chemistry of Organic Peroxide Compounds], Donetsk, 1976, p. 16 (in Russian).Google Scholar
  9. 9.
    R. Prins, Chem. Commun., 1970, 5, 280.CrossRefGoogle Scholar
  10. 10.
    B. Su, I. Hatay, P. Y. Ge, Chem. Commun., 2010, 46, 2918.CrossRefGoogle Scholar
  11. 11.
    M. L. H. Green, Organometallic Compounds. The Transition Elements, Methuen and co LTD (England), London, 1968.Google Scholar
  12. 12.
    A. N. Nesmejanov, E. G. Perewalova, L. P. Jurjeva, Chem. Ber., 1960, 93, 2729.CrossRefGoogle Scholar
  13. 13.
    A. N. Nesmeyanov, E. G. Perevalova, L. P. Yur’eva, K. I. Grandberg, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1962 [Izv. Akad. Nauk SSSR. Ser. Khim., 1962, 1772].Google Scholar
  14. 14.
    A. N. Nesmeyanov, E. G. Perevalova, L. P. Yur’eva, L. N. Kakurina, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1964, 13, 1802 [Izv. Akad. Nauk SSSR. Ser. Khim., 1964, 1897].CrossRefGoogle Scholar
  15. 15.
    A. N. Egorochkin, M. G. Voronkov, O. V. Kuznetsova, Polyarizatsionnyi effekt v organicheskoi, elementorganicheskoi i koordinatsionnoi khimii [Polarization Effect in Organic Organoelement and Coordination Chemistry], NNGU, Nizhny Novgorod, 2008, p. 61 (in Russian).Google Scholar
  16. 16.
    A. N. Nesmeyanov, V. A. Sazonova, V. N. Drozd, L. A. Nikonova, Dokl. Akad. Nauk SSSR, 1960, 133, 126 [Dokl. Chem. USSR (Engl. Transl.), 1960].Google Scholar
  17. 17.
    V. M. Fomin, A. E. Shirokov, N. G. Polyakova, P. A. Smirnov, Russ. J. Gen. Chem., 2007, 77, 652–653 [Zh. Obshch. khim., 2007, 77, 698].CrossRefGoogle Scholar
  18. 18.
    I. V. Berezin, K. Martinek, Osnovy fizicheskoi khimii fermentativnogo kataliza [Foundation of Physical Chemistry of Enzymatic Catalysis], Vysshaya Shkola, Moscow, 1977, p. 50 (in Russian).Google Scholar
  19. 19.
    M. C. Day, J. Selbin, Theoretical Inorganic Chemistry, 2nd ed., Reinhold Book Corporation, New York, 1962, 413 pp.Google Scholar
  20. 20.
    Ch. Reichardt, Th. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2010, 718 pp.CrossRefGoogle Scholar
  21. 21.
    J. Mathieu, R. Panico, Mécanismes Réactionnels en Chimie Organique, Hermann, Paris, 1972, 765 pp.Google Scholar
  22. 22.
    A. Weissberger, E. S. Proskauer, J. A. Riddik, E. E. Toops, Technics of Organic Chemistry. 7. Organic Solvents, Physical Properties and Methods of Purification, Interscience, New York, 1955.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.N. I. Lobachevsky Nizhny Novgorod State UniversityNizhny NovgorodRussian Federation

Personalised recommendations