Advertisement

Russian Chemical Bulletin

, Volume 63, Issue 3, pp 599–604 | Cite as

Change in sizes of carbon aggregates and primary particles of the onion-like carbon synthesized by high-temperature annealing of nanodiamond

  • S. I. Moseenkov
  • V. L. Kuznetsov
  • A. V. Ishchenko
Full Articles

Abstract

Changes in the sizes of nanodiamond (ND) aggregates in the course of preparation of the onion-like carbon (OLC) by high-temperature annealing in vacuo were studied. The main regularities of its formation were revealed. The change in the sizes of the ND aggregates at different stages of OLC preparation and the dependences of the OLC aggregate sizes on the structure and ND aggregate size were studied using methods of dynamic laser scattering and transmission electron microscopy.

Key words

nanodiamond onion-like carbon structure aggregates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. N. Tkachev, A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov, K. R. Zhdanov, V. L. Kuznetsov, S. I. Moseenkov, Vestn. Novosibirsk. Gos. Un-Ta. Ser. Fiz. [Bulletin of Novosibirsk State Univ., Ser. Phys.], 2008, 3, 95–98 (in Russian).Google Scholar
  2. 2.
    W. F. Souza, M. C. Pereira, L. C. A. Oliveira, Fuel, 2012, 96, 604–607.CrossRefGoogle Scholar
  3. 3.
    V. Kuznetsov, S. Moseenkov, A. Ischenko, A. Romanenko, T. Buryakov, O. Anikeeva, S. Maksimenko, P. Kuzhir, D. Bychanok, A. Gusinski, O. Ruhavets, O. Shenderova, P. Lambin, Phys. Status Solidi B, 2008, 245, 2051–2054.CrossRefGoogle Scholar
  4. 4.
    G. Feng, D. Jiang, P. T. Cummings, J. Chem. Theory Comput., 2012, 8, 1058–1063.CrossRefGoogle Scholar
  5. 5.
    Y. Gogotsi, in Carbon Nanomaterials, Ed. Y. Gogotsi, CRC Press, 2006, 333 pp.Google Scholar
  6. 6.
    D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Nat. Nanotechnol., 2010, 5, 651–654.CrossRefGoogle Scholar
  7. 7.
    A. Hirata, M. Igarashi, T. Kaito, Tribol. Int., 2004, 37, 899–905.CrossRefGoogle Scholar
  8. 8.
    L. Joly-Pottuz, E. W. Bucholz, N. Matsumoto, S. R. Phill- pot, S. B. Sinnott, N. Ohmae, J. M. Martin, Tribol. Lett., 2010, 37, 75–81.CrossRefGoogle Scholar
  9. 9.
    O. A. Shenderova, in Ultrananocrystalline Diamond: Synthesis, Properties, and Applications, Eds O. A. Shenderova, A. S. Barnard, D. M. Gruen, William Andrew Publishing, 2006, 600 pp.Google Scholar
  10. 10.
    F. Banhart, J. Appl. Phys., 1997, 81, 3440–3445.CrossRefGoogle Scholar
  11. 11.
    H. W. Kroto, Nature, 1992, 359, 670–671.CrossRefGoogle Scholar
  12. 12.
    T. Cabioc’h, A. Kharbach, A. Le Roy, J. P. Rivière, Chem. Phys. Lett., 1998, 285, 216–220.CrossRefGoogle Scholar
  13. 13.
    M. Zhao, H. Song, X. Chen, W. Lian, Acta Mater., 2007, 55, 6144–6150.CrossRefGoogle Scholar
  14. 14.
    V. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko, I. Y. Mal’kov, V. M. Titov, Chem. Phys. Lett., 1994, 222, 343–348.CrossRefGoogle Scholar
  15. 15.
    V. V. Danilenko, J. Superhard Mater., 2006, 28, 7–22.Google Scholar
  16. 16.
    O. A. Shenderova, I. I. Vlasov, S. Turner, G. Van Tendeloo, S. B. Orlinskii, A. A. Shiryaev, A. A. Khomich, S. N. Sulyanov, F. Jelezko, J. Wrachtrup, J. Phys. Chem. C, 2011, 115, 14014–14024.CrossRefGoogle Scholar
  17. 17.
    T. L. Daulton, D. D. Eisenhour, T. J. Bernatowicz, R. S. Lewis, P. R. Buseck, Geochim. Cosmochim. Acta, 1996, 60, 4853–4872.CrossRefGoogle Scholar
  18. 18.
    E. Ôsawa, Pure Appl. Chem., 2008, 80, 1365–1379.CrossRefGoogle Scholar
  19. 19.
    E. Ôsawa, Diam. Relat. Mater., 2007, 16, 2018–2022.CrossRefGoogle Scholar
  20. 20.
    I. Larionova, V. Kuznetsov, A. Frolov, O. Shenderova, S. Moseenkov, I. Mazov, Diam. Relat. Mater., 2006, 15, 1804–1808.CrossRefGoogle Scholar
  21. 21.
    A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A. E. Aleksenskii, A. Y. Vul’, E. Ôsawa, Carbon, 2005, 43, 1722–1730.CrossRefGoogle Scholar
  22. 22.
    N. Gibson, O. Shenderova, T. J. M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald, D. W. Brenner, Diam. Relat. Mater., 2009, 18, 620–626.CrossRefGoogle Scholar
  23. 23.
    A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Acs Appl. Mater. Interfaces, 2010, 2, 3289–3294.CrossRefGoogle Scholar
  24. 24.
    Y. V. Butenko, V. L. Kuznetsov, E. A. Paukshtis, A. I. Stadnichenko, I. N. Mazov, S. I. Moseenkov, A. I. Boronin, S. V. Kosheev, Fullerenes Nanotub. Carbon Nanostruct., 2006, 14, 557–564.CrossRefGoogle Scholar
  25. 25.
    V. L. Kuznetsov, Yu. V. Butenko, in Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Eds D. M. Gruen, O. A. Shenderova, A. Ya. Vul’, Springer, 2005, 401 pp.Google Scholar
  26. 26.
    A. L. Ternei, Sovremennaya organicheskaya khimiya [Modern Organic Chemistry], Mir, Moscow, Vol. 2, 1981, 655 pp. (in Russian).Google Scholar
  27. 27.
    S. I. Moseenkov, Ph. D. (Chem.) Thesis, Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2010, 183 pp. (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. I. Moseenkov
    • 1
  • V. L. Kuznetsov
    • 1
    • 2
  • A. V. Ishchenko
    • 1
  1. 1.G. K. Boreskov Institute of CatalysisSiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.Novosibirsk National Research UniversityNovosibirskRussian Federation

Personalised recommendations