Skip to main content
Log in

Change in sizes of carbon aggregates and primary particles of the onion-like carbon synthesized by high-temperature annealing of nanodiamond

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Changes in the sizes of nanodiamond (ND) aggregates in the course of preparation of the onion-like carbon (OLC) by high-temperature annealing in vacuo were studied. The main regularities of its formation were revealed. The change in the sizes of the ND aggregates at different stages of OLC preparation and the dependences of the OLC aggregate sizes on the structure and ND aggregate size were studied using methods of dynamic laser scattering and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. N. Tkachev, A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov, K. R. Zhdanov, V. L. Kuznetsov, S. I. Moseenkov, Vestn. Novosibirsk. Gos. Un-Ta. Ser. Fiz. [Bulletin of Novosibirsk State Univ., Ser. Phys.], 2008, 3, 95–98 (in Russian).

    Google Scholar 

  2. W. F. Souza, M. C. Pereira, L. C. A. Oliveira, Fuel, 2012, 96, 604–607.

    Article  CAS  Google Scholar 

  3. V. Kuznetsov, S. Moseenkov, A. Ischenko, A. Romanenko, T. Buryakov, O. Anikeeva, S. Maksimenko, P. Kuzhir, D. Bychanok, A. Gusinski, O. Ruhavets, O. Shenderova, P. Lambin, Phys. Status Solidi B, 2008, 245, 2051–2054.

    Article  CAS  Google Scholar 

  4. G. Feng, D. Jiang, P. T. Cummings, J. Chem. Theory Comput., 2012, 8, 1058–1063.

    Article  CAS  Google Scholar 

  5. Y. Gogotsi, in Carbon Nanomaterials, Ed. Y. Gogotsi, CRC Press, 2006, 333 pp.

  6. D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Nat. Nanotechnol., 2010, 5, 651–654.

    Article  CAS  Google Scholar 

  7. A. Hirata, M. Igarashi, T. Kaito, Tribol. Int., 2004, 37, 899–905.

    Article  CAS  Google Scholar 

  8. L. Joly-Pottuz, E. W. Bucholz, N. Matsumoto, S. R. Phill- pot, S. B. Sinnott, N. Ohmae, J. M. Martin, Tribol. Lett., 2010, 37, 75–81.

    Article  CAS  Google Scholar 

  9. O. A. Shenderova, in Ultrananocrystalline Diamond: Synthesis, Properties, and Applications, Eds O. A. Shenderova, A. S. Barnard, D. M. Gruen, William Andrew Publishing, 2006, 600 pp.

  10. F. Banhart, J. Appl. Phys., 1997, 81, 3440–3445.

    Article  CAS  Google Scholar 

  11. H. W. Kroto, Nature, 1992, 359, 670–671.

    Article  Google Scholar 

  12. T. Cabioc’h, A. Kharbach, A. Le Roy, J. P. Rivière, Chem. Phys. Lett., 1998, 285, 216–220.

    Article  Google Scholar 

  13. M. Zhao, H. Song, X. Chen, W. Lian, Acta Mater., 2007, 55, 6144–6150.

    Article  CAS  Google Scholar 

  14. V. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko, I. Y. Mal’kov, V. M. Titov, Chem. Phys. Lett., 1994, 222, 343–348.

    Article  CAS  Google Scholar 

  15. V. V. Danilenko, J. Superhard Mater., 2006, 28, 7–22.

    Google Scholar 

  16. O. A. Shenderova, I. I. Vlasov, S. Turner, G. Van Tendeloo, S. B. Orlinskii, A. A. Shiryaev, A. A. Khomich, S. N. Sulyanov, F. Jelezko, J. Wrachtrup, J. Phys. Chem. C, 2011, 115, 14014–14024.

    Article  CAS  Google Scholar 

  17. T. L. Daulton, D. D. Eisenhour, T. J. Bernatowicz, R. S. Lewis, P. R. Buseck, Geochim. Cosmochim. Acta, 1996, 60, 4853–4872.

    Article  CAS  Google Scholar 

  18. E. Ôsawa, Pure Appl. Chem., 2008, 80, 1365–1379.

    Article  Google Scholar 

  19. E. Ôsawa, Diam. Relat. Mater., 2007, 16, 2018–2022.

    Article  Google Scholar 

  20. I. Larionova, V. Kuznetsov, A. Frolov, O. Shenderova, S. Moseenkov, I. Mazov, Diam. Relat. Mater., 2006, 15, 1804–1808.

    Article  CAS  Google Scholar 

  21. A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A. E. Aleksenskii, A. Y. Vul’, E. Ôsawa, Carbon, 2005, 43, 1722–1730.

    Article  Google Scholar 

  22. N. Gibson, O. Shenderova, T. J. M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald, D. W. Brenner, Diam. Relat. Mater., 2009, 18, 620–626.

    Article  CAS  Google Scholar 

  23. A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Acs Appl. Mater. Interfaces, 2010, 2, 3289–3294.

    Article  CAS  Google Scholar 

  24. Y. V. Butenko, V. L. Kuznetsov, E. A. Paukshtis, A. I. Stadnichenko, I. N. Mazov, S. I. Moseenkov, A. I. Boronin, S. V. Kosheev, Fullerenes Nanotub. Carbon Nanostruct., 2006, 14, 557–564.

    Article  CAS  Google Scholar 

  25. V. L. Kuznetsov, Yu. V. Butenko, in Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Eds D. M. Gruen, O. A. Shenderova, A. Ya. Vul’, Springer, 2005, 401 pp.

  26. A. L. Ternei, Sovremennaya organicheskaya khimiya [Modern Organic Chemistry], Mir, Moscow, Vol. 2, 1981, 655 pp. (in Russian).

    Google Scholar 

  27. S. I. Moseenkov, Ph. D. (Chem.) Thesis, Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2010, 183 pp. (in Russian).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Moseenkov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0599–0604, March, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moseenkov, S.I., Kuznetsov, V.L. & Ishchenko, A.V. Change in sizes of carbon aggregates and primary particles of the onion-like carbon synthesized by high-temperature annealing of nanodiamond. Russ Chem Bull 63, 599–604 (2014). https://doi.org/10.1007/s11172-014-0479-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-014-0479-9

Key words

Navigation