Advertisement

Russian Chemical Bulletin

, Volume 63, Issue 3, pp 561–566 | Cite as

Quantum chemical calculations of the pK a of C60H2 in DMSO, toluene—DMSO mixture, and water

  • V. B. Luzhkov
Full Articles

Abstract

Using quantum chemical calculations, the first pK a values of dihydrofullerene C60H2 and test carbon compounds were determined in three solvents. The gas-phase free energies were calculated at the DFT/B3LYP/6-31G(d)//B3LYP/6-311++G(2d,p) level, while the free energies of solvation were found by HF and B3LYP methods combined with the polarizable continuum model (PCM). The PCM parameters for fullerene C60 and its derivatives were obtained from the calibration procedure. The R(C) radii of the solvation cavity of the fullerene C atoms were estimated taking into account the AO hybridization in the non-planar aromatic system of the fullerene C60 and from the calculation data of constant electron density contours. The R(C) values for the C60H anion were derived from consideration of the thermodynamic cycle of pK a changes in DMSO and in a toluene—DMSO system for saccharin and dihydrofullerene. The calculations carried out for test carboxylic acids reflect rather accurately the gas-phase basicities and pK a in water and DMSO. The calculations for solutions demonstrated that C60H2 has much lower pK a than the test aromatic molecules, which is mainly caused by the contribution of the gas-phase basicity. The absolute value of pK a of the dihydrofullerene C60H2 in DMSO obtained in this way is 3.8, while in water, it is ∼5 units higher.

Key words

fullerene C60 dihydrofullerene C60H2 free energy of solvation protonation constants pKa polarizable continuum model density functional theory B3LYP functional Hartree-Fock method 

References

  1. 1.
    The Fullerenes, Eds H. W. Kroto, J. E. Fischer, D. E. Cox, Pergamon Press, Oxford, UK, 1993.Google Scholar
  2. 2.
    M. Bühl, A. Hirsch, Chem. Rev., 2001, 101, 1153.CrossRefGoogle Scholar
  3. 3.
    E. Nakamura, H. Isobe, Acc. Chem. Res., 2003, 36, 807.CrossRefGoogle Scholar
  4. 4.
    P. A. Troshin, R. N. Lubovskaya, Russ. Chem. Rev. (Eng. Transl.), 2008, 77, 323 [Usp. Khim., 2008, 77, 323].CrossRefGoogle Scholar
  5. 5.
    P. A. Troshin, O. A. Troshina, R. N. Lyubovskaya, V. F. Razumov, Funktsional’nye proizvodnye fullerenov: metody sinteza i perspektivy ispol’zovaniya v organicheskoi elektronike i biomeditsine [Functional Derivatives of Fullerenes: Methods of Synthesis and Prospective Applications in Organic Electronics and Biomedicine], Izd. IvGU, Ivanovo, 2nd ed., 2010, 340 pp. (in Russian).Google Scholar
  6. 6.
    R. S. Ruoff, D. S. Tse, R. Malhotra, D. C. Lorents, J. Phys. Chem., 1993, 97, 3379.CrossRefGoogle Scholar
  7. 7.
    M. V. Korobov, A. L. Smith, in Fullerenes: Chemistry, Physics, and Technology, Eds K. M. Kadish, R. S. Ruoff, ECS, 2000, p. 53.Google Scholar
  8. 8.
    C. T. Jafvert, P. P. Kulkarni, Environ. Sci. Technol., 2008, 42, 5945.CrossRefGoogle Scholar
  9. 9.
    P. J. Fagan, P. J. Krusic, D. H. Evans, S. A. Lerke, E. Johnston, J. Am. Chem. Soc., 1992, 114, 9697.CrossRefGoogle Scholar
  10. 10.
    M. E. Niyazymbetov, D. H. Evans, S. A. Lerke, P. A. Cahill, C. C. Henderson, J. Phys. Chem., 1994, 98, 13093.CrossRefGoogle Scholar
  11. 11.
    B. Jousselme, G. Sonmez, F. Wudl, J. Mater. Chem., 2006, 16, 3478.CrossRefGoogle Scholar
  12. 12.
    S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys., 1981, 55, 117.CrossRefGoogle Scholar
  13. 13.
    V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys., 1997, 107, 3210.CrossRefGoogle Scholar
  14. 14.
    M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys., 2002, 117, 43.CrossRefGoogle Scholar
  15. 15.
    W. A. Shapley, G. B. Bacskay, G. G. Warr, J. Phys. Chem. B, 1998, 102, 1938.CrossRefGoogle Scholar
  16. 16.
    G. Schüürmann, M. Cossi, V. Barone, J. Tomasi, J. Phys. Chem. A, 1998, 102, 6706.CrossRefGoogle Scholar
  17. 17.
    I. A. Topol, G. J. Tawa, R. A. Caldwell, M. A. Eissenstat, S. K. Burt, J. Phys. Chem. A, 2000, 104, 9619.CrossRefGoogle Scholar
  18. 18.
    M. D. Liptak, G. C. Shields, J. Am. Chem. Soc., 2001, 123, 7314.CrossRefGoogle Scholar
  19. 19.
    M. D. Liptak, K. C. Gross, P. G. Seybold, S. Feldgus, G. C. Shields, J. Am. Chem. Soc., 2002, 124, 6421.CrossRefGoogle Scholar
  20. 20.
    J. J. Kliciæ, R. A. Friesner, S.-Y. Liu, W. C. Guida, J. Phys. Chem. A, 2002, 106, 1327.CrossRefGoogle Scholar
  21. 21.
    D. Gao, P. Svoronos, P. K. Wong, D. Maddalena, J. Hwang, H. Walker, J. Phys. Chem. A, 2005, 109, 10776.CrossRefGoogle Scholar
  22. 22.
    K. Muriowska, N. Sadlej-Sosnowska, J. Phys. Chem. A, 2005, 109, 5590.CrossRefGoogle Scholar
  23. 23.
    J. Ho, M. L. Coote, J. Chem. Theory Comput., 2009, 5, 295.CrossRefGoogle Scholar
  24. 24.
    A. Trummal, A. Rummel, E. Lippmaa, P. Burk, I. A. Koppel, J. Phys. Chem. A, 2009, 113, 6206.CrossRefGoogle Scholar
  25. 25.
    J. Ho, M. L. Coote, Theor. Chem. Acc., 2010, 125, 3.CrossRefGoogle Scholar
  26. 26.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford (CT), 2004.Google Scholar
  27. 27.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  28. 28.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  29. 29.
    A. P. Scott, L. Radom, J. Phys. Chem., 1996, 100, 16502.CrossRefGoogle Scholar
  30. 30.
    S. M. Blinder, Advanced Physical Chemistry, The Macmillan Company, Toronto, 1969.Google Scholar
  31. 31.
    R. A. Pierotti, Chem. Rev., 1976, 76, 717.CrossRefGoogle Scholar
  32. 32.
    J. Caillet, P. Claverie, B. Pullman, Acta Crystallogr., Sect. B, 1978, 34, 3266.CrossRefGoogle Scholar
  33. 33.
    R. C. Haddon, Science, 1993, 261, 1545.CrossRefGoogle Scholar
  34. 34.
    R. C. Haddon, Acc. Chem. Res., 1988, 21, 243.CrossRefGoogle Scholar
  35. 35.
    D. M. Chipman, J. Phys. Chem. A, 2002, 106, 7413.CrossRefGoogle Scholar
  36. 36.
    T. Yu. Dolinina, V. B. Luzhkov, Russ. Chem. Bull. (Int. Ed.), 2012, 61, 1614 [Izv. Akad. Nauk. Ser. Khim., 2012, 1614].CrossRefGoogle Scholar
  37. 37.
    F. G. Bordwell, Acc. Chem. Res., 1988, 21, 456.CrossRefGoogle Scholar
  38. 38.
    C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2007, 111, 408.CrossRefGoogle Scholar
  39. 39.
    P. Wang, A. Anderko, Fluid Phase Equil., 2001, 186, 103.CrossRefGoogle Scholar
  40. 40.
    C. J. F. Böttcher, Theory of Electric Polarization, v. 1, Elsevier, Amsterdam, 1973, p. 201.Google Scholar
  41. 41.
    E. Westphal, J. R. Pliego, Jr., J. Chem. Phys., 2005, 123, 074508.CrossRefGoogle Scholar
  42. 42.
    C. Kalidas, G. Hefter, Y. Marcus, Chem. Rev., 2000, 100, 819.CrossRefGoogle Scholar
  43. 43.
    J. R. Pliego Jr., J. M. Riveros, Phys. Chem. Chem. Phys., 2002, 4, 1622.CrossRefGoogle Scholar
  44. 44.
    M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, T.R. Tuttle Jr., J. Phys. Chem. A, 1998, 102, 7787.CrossRefGoogle Scholar
  45. 45.
    NIST Chemistry WebBook, NIST Standard Reference Data-base Number 69, Eds P. J. Linstrom, W. G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov.
  46. 46.
    D. H. Ripin, D. A. Evans, pK a table, http://daecr1.harvard.edu/pdf/evans-pKa-table.pdf.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesMoscow RegionRussian Federation

Personalised recommendations