Russian Chemical Bulletin

, Volume 63, Issue 2, pp 529–537 | Cite as

New strategy for the synthesis of ladybird beetle azaphenalene alkaloids using a combination of allylboration and intramolecular metathesis. Total synthesis of (±)-Hippocasine and (±)-epi-Hippodamine

  • N. Yu. Kuznetsov
  • S. E. Lyubimov
  • I. A. Godovikov
  • Yu. N. Bubnov
Full Articles


A new strategy for assembly a tricyclic skeleton of ladybirds azaphenalene alkaloids (coccinellides) was developed based on the combination of allylboration reaction and intramolecular metathesis. The first key step is the 1,2-organolithiation of 4-picoline with (4,4-dieth-oxybutyl)lithium with subsequent reductive allylation with triallylborane leading to trans-2-allyl-6-(4,4-diethoxybutyl)-4-methyl-1,2,3,6-tetrahydropyridine. The 4,4-diethoxybutyl substituent was further converted to 4-acetoxy-5-hexenyl in four steps, then, the product obtained was involved in the second key step, the intramolecular allylic amination upon treatment with a [Pd] or an [Ir] catalyst giving diastereomeric bicyclic terminal dienes (∼1: 1), which were separated by chromatography. The stereochemistry of one of the dienes is the same as that in alkaloid Hippocasine. The third key step (the intramolecular metathesis reaction) includes the final assembly of the azaphenalene system. The tricyclic derivative obtained contains two differently substituted C=C bonds, selective hydrogenation of one of which (Pd/C) leads to (±)-Hippocasine, whereas exhaustive hydrogenation gives (±)-epi-Hippodamine.

Key words

Hippocasine epi-Hippodamine allylboranes allylboration nitrogen heterocycles cyclization metathesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ecology and Behaviour of the Ladybird Beetles (Coccinellidae), Eds I. Hodek, H. F. van Emden, A. Honek, Blackwell, 2012, 600 p.Google Scholar
  2. 2.
    A. G. King, J. Meinwald, Chem. Rev., 1996, 96, 1105.CrossRefGoogle Scholar
  3. 3.
    W. A. Ayer, L. M. Browne, Heterocycles, 1977, 7, 685.CrossRefGoogle Scholar
  4. 4.
    S. A. Abassi, M. A. Birkett, J. Petersson, J. A. Pickett, L. J. Wadhams, C. M. Woodcock, J. Chem. Ecol., 2001, 27, 33.CrossRefGoogle Scholar
  5. 5.
    J. J. Sloggett, Insects, 2012, 3, 653.CrossRefGoogle Scholar
  6. 6. (a)
    B. Tursch, D. Daloze, M. Dupont, J. M. Pasteels, M. C. Tricot, Experientia, 1971, 27, 1380CrossRefGoogle Scholar
  7. 6. (b)
    B. Tursch, D. Daloze, J. M. Pasteels, A. Cravador, J. C. Braekman, C. Hootele, D. Zimmermann, Bull. Soc. Chim. Belg., 1972, 81, 649CrossRefGoogle Scholar
  8. 6. (c)
    R. Karlsson, D. Losman, J. Chem. Soc., Chem. Commun., 1972, 626Google Scholar
  9. 6. (d)
    B. Tursch, D. Daloze, J. C. Braekman, C. Hootele, A. Cravador, D. Losman, R. Karlsson, Tetrahedron Lett., 1974, 409Google Scholar
  10. 6. (e)
    B. Tursch, D. Daloze, J. C. Braekman, C. Hootele, J. M. Pasteels, Tetrahedron, 1975, 31, 1541CrossRefGoogle Scholar
  11. 6. (f)
    W. A. Ayer, M. J. Bennett, L. M. Browne, J. T. Purdham, Can. J. Chem., 1976, 54, 1807.CrossRefGoogle Scholar
  12. 7. (a)
    W. A. Ayer, K. Furuichi, Can. J. Chem., 1976, 54, 1994Google Scholar
  13. 7. (b)
    R. H. Mueller, M. E. Thompson, Tetrahedron Lett., 1979, 1191Google Scholar
  14. 7. (c)
    R. H. Mueller, M. E. Thompson, R. M. DiPardo, J. Org. Chem., 1984, 49, 2217CrossRefGoogle Scholar
  15. 7. (d)
    R. W. Stevens, A. W. M. Lee, J. Am. Chem. Soc., 1979, 101, 7032CrossRefGoogle Scholar
  16. 7. (e)
    C. Yue, J. F. Nicolay, J. Royer, H. P. Husson, Tetrahedron, 1994, 50, 3139CrossRefGoogle Scholar
  17. 7. (f)
    A. I. Gerasyuto, R. P. Hsung, Org. Lett., 2006, 8, 4899CrossRefGoogle Scholar
  18. 7. (g)
    H. Takahata, H. Ouchi, M. Ichinose, H. Nemoto, Org. Lett., 2002, 4, 3459.CrossRefGoogle Scholar
  19. 8. (a)
    W. A. Ayer, R. Dowe, R. A. Eisner, K. Furuichi, Can. J. Chem., 1976, 54, 473CrossRefGoogle Scholar
  20. 8. (b)
    A. I. Gerasyuto, R. P. Hsung, J. Org. Chem., 2007, 72, 2476CrossRefGoogle Scholar
  21. 8. (c)
    M. Diaz-Gavilan, W. R. J. D. Galloway, K. M. G. O’Connell, J. T. Hodkingson, D. R. Spring, Chem. Commun., 2010, 46, 776CrossRefGoogle Scholar
  22. 8. (d)
    R. H. Mueller, M. E. Thompson, Tetrahedron Lett., 1980, 1093Google Scholar
  23. 8. (e)
    M. Rejzek, R. A. Stockman, D. L. Hughes, Org. Biomol. Chem., 2005, 3, 73CrossRefGoogle Scholar
  24. 8. (f)
    S. Fujita, T. Sakaguchi, T. Kobayashi, H. Tsuchikawa, S. Katsumura, Org. Lett., 2013, 15, 2758.CrossRefGoogle Scholar
  25. 9.
    M. Langlois, J. L. Soulier, D. Yang, B. Bremont, C. Florac, V. Rampillon, A. Giudice, Eur. J. Med. Chem., 1993, 28, 869.CrossRefGoogle Scholar
  26. 10. (a)
    K. Ziegler, H. Zeiser, Ber., 1930, 63, 1847CrossRefGoogle Scholar
  27. 10. (b)
    E. F. V. Scriven, in Comprehensive Heterocyclic Chemistry, vol. 2, Eds A. R. Katrizky, W. Rees, Pergamon Press, Oxford, 1984, p. 262–266.Google Scholar
  28. 11. (a)
    Yu. N. Bubnov, E. B. Klimkina, A. V. Ignatenko, I. D. Gridnev, Tetrahedron Lett., 1996, 37, 1317CrossRefGoogle Scholar
  29. 11. (b)
    Yu. N. Bubnov, E. B. Klimkina, A. V. Ignatenko, I. D. Gridnev, Tetrahedron Lett., 1997, 38, 4631CrossRefGoogle Scholar
  30. 11. (c)
    Yu. N. Bubnov, E. V. Klimkina, Chem. Heterocycl. Compd, 1999, 1015 [Khim. Geterotsikl. Soedin., 1999, 1015]Google Scholar
  31. 11. (d)
    Yu. N. Bubnov, Advanced Boron Chemistry, Ed. Siebert, Thomas Graham House, Cambridge, 1997, 123–138Google Scholar
  32. 11. (e)
    Yu. N. Bubnov, N. Yu. Kuznetsov, M. E. Gurskii, A. L. Semenova, G. D. Kolomnikova, T. V. Potapova, Pure Appl. Chem., 2006, 78, 1357.CrossRefGoogle Scholar
  33. 12. (a)
    N. Yu. Kuznetsov, V. N. Khrustalev, I. A. Godovikov, Yu. N. Bubnov, Eur. J. Org. Chem., 2007, 2015Google Scholar
  34. 12. (b)
    Yu. N. Bubnov, E. V. Klimkina, A. V. Ignatenko, Russ. Chem. Bull. (Engl. Transl.), 1998, 451 [Izv. Akad. Nauk, Ser. Khim. 1998, 467]Google Scholar
  35. 12. (c)
    Yu. N. Bubnov, E. V. Klimkina, A. V. Ignatenko, Russ. Chem. Bull. (Engl. Transl.), 1998, 941 [Izv. Akad. Nauk, Ser. Khim., 1998, 971].Google Scholar
  36. 13.
    Yu. N. Bubnov, T. V. Potapova, M. E. Gurskii, Metalloorg. Khim., 1990, 3, 1193 [Organomet. Chem. USSR (Engl. Transl.), 1990, 3].Google Scholar
  37. 14.
    I. Beaudet, A. Duchene, J.-L. Parrain, J.-P. Quintard, J. Organomet. Chem., 1992, 427, 201.CrossRefGoogle Scholar
  38. 15.
    H. C. Brown, N. R. DeLue, G. W. Kabalka, H. C., Jr. Hedgecock, J. Am. Chem. Soc., 1976, 98, 1290.CrossRefGoogle Scholar
  39. 16. (a)
    Y. Wu, P. Ahlberg, J. Org. Chem. 1994, 59, 5076CrossRefGoogle Scholar
  40. 16. (b)
    T. Enomoto, T. Morimoto, M. Ueno, T. Matsukubo, Y. Shimada, K. Tsutsumi, R. Shirai, K. Kakiuchi, Tetrahedron, 2008, 64, 4051.CrossRefGoogle Scholar
  41. 17.
    T. S. Mansour, T. C. Wong, E. M. Kaise, J. Chem. Soc., Perkin Trans. 2, 1985, 2045.Google Scholar
  42. 18.
    X. Wang, J. Li, R. A. Saporito, N. Toyooka, Tetrahedron, 2013, 69, 10311.CrossRefGoogle Scholar
  43. 19.
    C. Welter, O. Koch, G. Lipowsky, G. Helmchen, Chem. Commun., 2004, 896.Google Scholar
  44. 20.
    T. V. RajanBabu, T. A. Ayers, G. A. Halliday, K. K. You, J. C. Calabrese, J. Org. Chem., 1997, 62, 6012.CrossRefGoogle Scholar
  45. 21.
    Y. Tatsuno, T. Yoshida, S. Otsuka, Inorganic Syntheses, 1990, 28, 342.Google Scholar
  46. 22. (a)
    A. Cambanis, E. Baeuml, H. Mayr, Synthesis, 1989, 128Google Scholar
  47. 22. (b)
    L. A. Yanovskaya, V. M. Belikov, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1965, 1329 [Izv. Akad. Nauk, Ser. Khim., 1965, 1363]Google Scholar
  48. 22. (c)
    N. Teppei, O. Masato, Y. Teizo, N. Kazuhiro, K. Tsugio, Bull. Chem. Soc. Jpn., 2004, 77, 157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations