Russian Chemical Bulletin

, Volume 63, Issue 1, pp 88–93 | Cite as

Conversion of ethanol into hydrocarbon components of fuels in the presence of Pd-Zn-containing catalysts

  • A. V. Chistyakov
  • M. A. Gubanov
  • V. Yu. Murzin
  • P. A. Zharova
  • M. V. Tsodikov
  • V. V. Kriventsov
  • A. E. Gekhman
  • I. I. Moiseev
Full Articles


The features of ethanol conversion into hydrocarbons C4-C12 in the presence of the novel catalyst Pd-Zn/γ-alumina and pilot zeolite system Pd-Zn/MFI/γ-alumina were studied (MFI is high-siliceous zeolite with ZSM-5 type structure). The structure of active sites changes noticeably in the course of preliminary activation and catalytic reaction. High selectivity and stability of the zeolite-containing Pd-Zn catalyst in alcohol conversion into hydrocarbon components of fuels is related to the stable composition of the alloy that forms clusters PdZn. At the same time, the alumina-based catalyst loses stability due to zinc diffusion from the alloy into γ-Al2O3 to form the spinel structure.

Key words

biofuel ethanol heterogeneous catalysis structural studies X-ray diffraction analysis transmission electron microscopy EXAFS spectroscopy XANES spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Iwasa, S. Masuda, N. Ogawa, N. Takezawa, Appl. Catal. A, 1995, 125, 145.CrossRefGoogle Scholar
  2. 2.
    N. Iwasa, N. Ogawa, S. Masuda, N. Takezawa, Bull. Chem. Soc. Jpn, 1998, 71, 1451.CrossRefGoogle Scholar
  3. 3.
    Y. H. Chin, R. Dagle, J. L. Hu, A. C. Dohnalkova, Y. Wang, Catal. Today, 2002, 77, 79.CrossRefGoogle Scholar
  4. 4.
    A. Karim, T. Conant, A. Datye, J. Catal., 2006, 243, 420.CrossRefGoogle Scholar
  5. 5.
    R. A. Dagle, Y. H. Chin, Y. Wang, Top. Catal., 2007, 46, 358.CrossRefGoogle Scholar
  6. 6.
    I. Eswaramoorthi, A. K. Dalai, Int. J. Hydr. Energy, 2009, 34, 2580.CrossRefGoogle Scholar
  7. 7.
    N. Iwasa, T. Mayanagi, S. Masuda, N. Takezawa, React. Kinet. Catal. Lett., 2000, 69, 355.CrossRefGoogle Scholar
  8. 8.
    C. Fukuhara, Y. Kamata, A. Igarashi, Appl. Catal. A, 2007, 330, 108.CrossRefGoogle Scholar
  9. 9.
    A. V. Chistyakov, M. V. Tsodikov, V. Yu. Murzin, F. A. Yandieva, Ya. V. Zubavichus, N. Yu. Kozitsyna, V. V. Kriventsov, A. E. Gekhman, I. I. Moiseev, Kinet. Catal. (Engl. Transl.), 2011, 52, 258 [Kinet. Katal., 2011, 52, 288].CrossRefGoogle Scholar
  10. 10.
    I. S. Mashkovskii, O. P. Tkachenko, G. N. Baeva, A. Yu. Stakheev, Kinet. Catal. (Engl. Transl.), 2009, 50, 768 [Kinet. Katal., 2009, 50, 768].CrossRefGoogle Scholar
  11. 11.
    O. P. Tkachenko, A. Y. Stakheev, L. M. Kustov, I. V. Mashkovsky, M. Van den Berg, W. Grunert, N. Y. Kozitsyna, Z. V. Dobrokhotova, V. I. Zhilov, S. E. Nefedov, M. N. Vargaftik, I. I. Moiseev, Catal. Lett., 2006, 112, 155.CrossRefGoogle Scholar
  12. 12.
    Patent RF No. 2248341 (in Russian);
  13. 13.
    N. Yu. Kozitsyna, S. E. Nefedov, F. M. Dolgushin, N. V. Cherkashina, M. N. Vargaftik, I. I. Moiseev, Inorg. Chim. Acta, 2006, 359, 2072.CrossRefGoogle Scholar
  14. 14.
    A. A. Chernyshov, A. A. Veligzhanin, Y. V. Zubavichus, Nucl. Instr. Meth. Phys. Res. A, 2009, 603, 95.CrossRefGoogle Scholar
  15. 15.
    B. Ravel, M. Newville, Synchrotron Rad, 2005, 12, 537.CrossRefGoogle Scholar
  16. 16.
    A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Phys. Rev. B, 1998, 58, 7565.CrossRefGoogle Scholar
  17. 17.
    PDF-2 Data Base (Sets 1-47), ICPDS — International Centre for Diffraction Data, 1997.Google Scholar
  18. 18.
    R. Johansson, S. L. Hruby, J. Rass-Hansen, C. H. Christensen, Catal. Lett., 2009, 127, 1.CrossRefGoogle Scholar
  19. 19.
    E. Costa, A. Ugulna, J. Aguado, P. J. Hernandez, Ind. Eng. Chem. Process Des. Dev., 1985, 24, 239.CrossRefGoogle Scholar
  20. 20.
    A. K. Talukdar, K. G. Bhattacharyya, S. Sivasanker, Appl. Catal. A: General, 1997, 148, 357.CrossRefGoogle Scholar
  21. 21.
    J. C. Slater, J. Chem. Phys., 1964, 41, 3199.CrossRefGoogle Scholar
  22. 22.
    R. J. Davis, S. M. Landry, J. A. Horsley, M. Boudart, Phys. Rev. B, 1989, 39, 10580.CrossRefGoogle Scholar
  23. 23.
    J. Grunwaldt, M. Caravati, A. Baiker, J. Phys. Chem. B, 2006, 110, 25586.CrossRefGoogle Scholar
  24. 24.
    A. Yu. Stakheev, I. S. Mashkovskii, O. P. Tkachenko, K. V. Klementiev, W. Grunert, G. N. Baeva, L. M. Kustov, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 280 [Izv. Akad. Nauk, Ser. Khim., 2009, 280].CrossRefGoogle Scholar
  25. 25.
    M. W. Tew, M. Janousch, T. Huthwelker, J. A. van Bokhoven, J. Catal., 2011, 283, 45.CrossRefGoogle Scholar
  26. 26.
    E. J. A. X. van de Sandt, A. Wiersma, M. Makkee, H. van Bekkum, J. A. Moulijn, Appl. Cat. A: General, 1997, 155, 59.CrossRefGoogle Scholar
  27. 27.
    Y.-F. Han, D. Kumar, C. Sivadinarayana, A. Clearfield, D. W. Goodman, Catal. Lett., 2004, 94, No. 3–4, 131.CrossRefGoogle Scholar
  28. 28.
    A. H. Zaidi, Appl. Cat., 1987, 30, 131.CrossRefGoogle Scholar
  29. 29.
    N. Seriani, F. Mittendorfer, G. Kresse, J. Chem. Phys., 2010, 132, 024711.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. V. Chistyakov
    • 1
  • M. A. Gubanov
    • 1
  • V. Yu. Murzin
    • 1
    • 2
  • P. A. Zharova
    • 1
  • M. V. Tsodikov
    • 1
  • V. V. Kriventsov
    • 3
  • A. E. Gekhman
    • 4
  • I. I. Moiseev
    • 4
  1. 1.A. V. Topchiev Institute of Peterochemical SynthesisRussian Academy of SciencesMoscowRussian Federation
  2. 2.National Research Center “Kurchatovskii Institut,”MoscowRussian Federation
  3. 3.G. K. Boreskov Institute of CatalysisSiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  4. 4.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations