Advertisement

Russian Chemical Bulletin

, Volume 62, Issue 11, pp 2445–2453 | Cite as

Electrophilic ipso-substitution in uracil derivatives

  • I. B. Chernikova
  • S. L. Khursan
  • L. V. Spirikhin
  • M. S. Yunusov
Full Articles

Abstract

Treatment of 5-iodo-1,3,6-trimethyluracil with 50% H2SO4 gives 1,3,6-trimethyluracil; with 5-bromo-1,3,6-trimethyluracil, a mixture of 1,3,6-trimethyluracil and 6-bromomethyl-1,3-dimethyluracil is obtained. 5-Chloro-1,3,6-trimethyluracil remains inert under these conditions. According to the DFT modeling of the reactions of 5-halo-1,3,6-trimethyluracils, a nucleophilic agent can abstract either Hal+ or the methyl proton from the carbocation formed by protonation of the starting halouracil at position 5, which accounts for the formation of two products from the 5-bromo derivative. Under similar conditions, 6-methyluracil dibromohydrin yields N-bromo-5-bromo-6-hydroxymethyluracil. Bromination or chlorination of 5-hydroxymethyl- or 5-formyl-6-methyluracils follows the ipso-substitution scheme leading to 6-methyluracil 5-halo- and 5,5-dihalohydrins.

Key words

substituted uracils halogenation ipso-substitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Registr lekarstvennykh sredstv Rossii. Entsiklopediya lekarstv [The Register of Drugs in the Russian Federation. Drug Encyclopedia], Ed. V. G. Vyshkovskii, RLS-2009, Moscow, 2008, 16, 550 pp. (in Russian).Google Scholar
  2. 2.
    M. D. Gaevyi, P. A. Galenko-Yaroshevskii, V. I. Petrov, Farmakoterapiya s osnovami klinicheskoi farmakologii [Pharmacotherapy with the Fundamentals of Clinical Pharmacology], Volgograd, 1996, 451 pp. (in Russian).Google Scholar
  3. 3.
    V. A. Myshkin, A. B. Bakirov, Oksimetiluratsil. Ocherki eksperimental’noi farmakologii [Hydroxymethyluracil. Essays on Experimental Pharmacology], DAR, Ufa, 2001, 218 pp. (in Russian).Google Scholar
  4. 4.
    V. A. Myshkin, R. B. Ibatullina, A. I. Savlukov, A. B. Bakirov, S. A. Sergeeva, Antioksidantnye effekty proizvodnykh pirimidina i benzimidazola pri ostrykh otravleniyakh [The Antioxidant Effects of Pyrimidine and Benzimidazole Derivatives on Acute Poisoning], Ufa, 2003, 189 pp. (in Russian).Google Scholar
  5. 5.
    E. Saniger, J. M. Campos, A. Entrena, J. A. Marchal, I. Suarez, A. Aranega, D. Choquesillo, J. Niclos, M. A. Gallo, A. Espinosa, Tetrahedron, 2003, 59, 5457.CrossRefGoogle Scholar
  6. 6.
    M. Hoffer, R. Duschinsky, J. J. Fox, N. Yung, J. Am. Chem. Soc., 1959, 81, 4112.CrossRefGoogle Scholar
  7. 7.
    E. R. Garrett, T. Suzuki, D. J. Weber, J. Am. Chem. Soc., 1964, 80, 4460.CrossRefGoogle Scholar
  8. 8.
    H. Ren, Y. Yang, J. Lin, Y. Qi, Y. Zhang, Front. Chem. China, 2008, 3, 152.CrossRefGoogle Scholar
  9. 9.
    V. G. Kasradze, I. B. Ignatyeva, R. A. Khusnutdinov, K. Yu. Suponitskii, M. Yu. Antipin, M. S. Yunusov, Khim. Geterotsikl. Soedin., 2012, 1095 [Chem. Heterocycl. Compd. (Engl. Transl.), 2012, 48, 1018].Google Scholar
  10. 10.
    V. P. Krivonogov, G. A. Tolstikov, Yu. I. Murinov, F. A. Zarudii, D. N. Lazareva, A. F. Ismagilova, S. S. Volkova, G. M. Sakhautdinova, L. V. Spirikhin, I. B. Abdrakhmanova, I. I. Krivonogova, Khim.-Farm. Zh., 1993, 27, No. 2, 38 [Pharm. Chem. J. (Engl. Transl.), 1993, 27].Google Scholar
  11. 11.
    H. C. J. Ottenheijm, R. M. J. Liskamp, S. P. J. M. van Nispen, H. A. Boots, M. W. Tijhuis, J. Org. Chem., 1981, 46, 3273.CrossRefGoogle Scholar
  12. 12.
    P. B. Terent’ev, Mass-spektrometriya v organicheskoi khimii [Mass Spectrometry in Organic Chemistry], Vysshaya Shkola, Moscow, 1979, 223 pp. (in Russian).Google Scholar
  13. 13.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Gaussian 09, Revision C.1, Gaussian, Inc., Wallingford (CT), 2009.Google Scholar
  14. 14.
  15. 15.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  16. 16.
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  17. 17.
    K. Raghavachari, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 1980, 72, 650.CrossRefGoogle Scholar
  18. 18.
    W. J. Stevens, H. Basch, M. Krauss, J. Chem. Phys., 1984, 81, 6026.CrossRefGoogle Scholar
  19. 19.
    W. J. Stevens, M. Krauss, H. Basch, P. G. Jasien, Can. J. Chem., 1992, 70, 612.CrossRefGoogle Scholar
  20. 20.
    B. Mennucci, E. Cancès, J. Tomasi, J. Phys. Chem. B, 1997, 101, 10506.CrossRefGoogle Scholar
  21. 21.
    J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.CrossRefGoogle Scholar
  22. 22.
    A. Wada, K. Ohki, S. Nagai, S. Kanatomo, J. Heterocycl. Chem., 1991, 28, 509.CrossRefGoogle Scholar
  23. 23.
    S. Senda, K. Hirota, K. Banno, J. Med. Chem., 1972, 15, 471.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • I. B. Chernikova
    • 1
  • S. L. Khursan
    • 1
  • L. V. Spirikhin
    • 1
  • M. S. Yunusov
    • 1
  1. 1.Institute of Organic ChemistryUfa Scientific Center of the Russian Academy of SciencesUfaRussian Federation

Personalised recommendations