Advertisement

Russian Chemical Bulletin

, Volume 62, Issue 9, pp 2032–2036 | Cite as

The absolute configuration of (+)- and (−)-1-phenylundec-4-yn-3-ols. Synthesis of (R)-4-dodecanolide, a component of the defensive secretion of rove beetle Bledius mandibullaris

  • A. L. Vlasyuk
  • V. A. Voblikova
  • G. D. Gamalevich
  • E. P. Serebryakov
Full Articles

Abstract

Hydrogenation of the triple bond of (+)-1-phenylundec-4-yn-3-ol (obtained from (+)-[η6-(3-hydroxyundec-4-yn-1-yl)benzene]chromium tricarbonyl) with the NaBH4-NiCl2·6H2O reagent system in MeOH leads to (−)-1-phenylundecan-3-ol. Ozonolysis of the phenyl ring in the corresponding acetate gives (R)-(−)-acetoxydodecanoic acid, lactonization of which leads to the known (R)-(+)-4-dodecanolide. The starting (+)-1-phenylundec-4-yn-3-ol was thus shown to have the S-configuration.

Key words

(S)-(+)-[η6-(3-hydroxyundec-4-yn-1-yl)benzene]chromium tricarbonyl (S)-(+)-1-phenylundec-4-yn-3-ol lipases ozonolysis (R)-(−)-4-acetoxydodecanoic acid (R)-(+)-4-dodecanolide stereochemical correlation chromium carbonyl complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Mori, T. Makada, T. Ebata, Tetrahedron, 1981, 37, 1343.CrossRefGoogle Scholar
  2. 2.
    C. J. Elsevier, J. Meijer, G. Tadema, P. M. Stehower, J. T. Bos, P. Vermeer, M. Runge, J. Org. Chem., 1982, 47, 2194.CrossRefGoogle Scholar
  3. 3.
    T. Fujisava, S. Iida, T. Sato, Tetrahedron Lett., 1984, 25, 4007.CrossRefGoogle Scholar
  4. 4.
    M. A. Hederson, C. H. Heathcock, J. Org. Chem., 1988, 53, 4736.CrossRefGoogle Scholar
  5. 5.
    C. J. Elsevier, P. Vermeer, J. Org. Chem., 1989, 54, 3726.CrossRefGoogle Scholar
  6. 6.
    J. A. Marshall, E. D. Robinson, A. Zapata, J. Org. Chem., 1989, 54, 5854.CrossRefGoogle Scholar
  7. 7.
    W. H. Pirkle, P. E. Adams, J. Org. Chem., 1979, 44, 2169.CrossRefGoogle Scholar
  8. 8.
    Y. Miyashita, K. Mori, Agric. Biol. Chem., 1981, 45, 2521.CrossRefGoogle Scholar
  9. 9.
    J. P. Vigneron, V. Bloy, Tetrahedron Lett., 1980, 21, 1735.CrossRefGoogle Scholar
  10. 10.
    M. M. Midland, A. Tramontano, Tetrahedron Lett., 1980, 21, 3549.CrossRefGoogle Scholar
  11. 11.
    R. Noyori, I. Tomino, M. Yamada, M. Nishizawa, J. Am. Chem. Soc., 1984, 106, 6717.CrossRefGoogle Scholar
  12. 12.
    E. Fukuzaki, S. Senda, Y. Nakazono, T. Omata, Tetrahedron, 1991, 47, 6223.CrossRefGoogle Scholar
  13. 13.
    P. Allevi, P. Chiuffreda, M. Anastasia, Tetrahedron Asymmetry, 1997, 8, 93.CrossRefGoogle Scholar
  14. 14.
    S. Takano, T. Yoshimitsu, K. Ogasavara, Synlett., 1994, 119.Google Scholar
  15. 15.
    M. Botta, V. Summa, F. Corelli, P. Lombardi, Tetrahedron Asymmetry, 1996, 7, 1263.CrossRefGoogle Scholar
  16. 16.
    A. L. Vlasuk, G. D. Gamalevich, A. V. Ignatenko, E. P. Serebryakov, M. I. Struchkova, Russ. Chem. Bull. (Int. Ed.), 2004, 53, 693 [Izv. Akad. Nauk, Ser.Khim., 2004, 3, 661].CrossRefGoogle Scholar
  17. 17.
    J. A. Dale, H. S. Mosher, J. Am. Chem. Soc., 1973, 95, 512.CrossRefGoogle Scholar
  18. 18.
    N. Kalyanam, D. A. Lightner, Tetrahedron Lett., 1979, 5, 415.CrossRefGoogle Scholar
  19. 19.
    T. Sugai, K. Mori, Agric. Biol. Chem., 1984, 48, 2497.CrossRefGoogle Scholar
  20. 20.
    J. W. Wheeler, G. M. Happ, J. Araujo, J. M. Pasteels, Tetrahderon Lett., 1972, 1, 4635.CrossRefGoogle Scholar
  21. 21.
    E. Brena, C. Fuganti, S. Serra, Tetrahedron: Asymmetry, 2003, 14, 1.CrossRefGoogle Scholar
  22. 22.
    G. Solladié, F. Matlouqi-Moghadam, J. Org. Chem., 1980, 47, 91.CrossRefGoogle Scholar
  23. 23.
    A. Bartlett, W. S. Johnson, J. D. Elliott, J. Am. Chem. Soc., 1983, 105, 2088.CrossRefGoogle Scholar
  24. 24.
    T. Muys, B. van der Ven, A. P. de Jonge, Nature, 1962, 194, 995; G. T. Muys, B. van der Ven, A. P. de Jonge, Appl. Microbiol., 1963, 11, 389.CrossRefGoogle Scholar
  25. 25.
    Y. Naoshima, H. Ozawa, H. Kondo, S. Hayashi, Agric. Biol. Chem., 1983, 47, 1431.CrossRefGoogle Scholar
  26. 26.
    Y. Naoshima, H. Hasegawa, T. Saeki, Agric. Biol. Chem., 1987, 51, 3417.CrossRefGoogle Scholar
  27. 27.
    T. Satoh, K. Nanba, S. Suzuki, Chem. Pharm. Bull., 1971, 19, 817.CrossRefGoogle Scholar
  28. 28.
    A. V. Bekish, K. N. Prokhorevich, O. G. Kulinkovich, Tetrahedron Lett., 2004, 45, 5253.CrossRefGoogle Scholar
  29. 29.
    M. Node, K. Nishide, Y. Shigeta, H. Shiraki, K. Obata, J. Am. Chem. Soc., 2000, 122, 1927.CrossRefGoogle Scholar
  30. 30.
    R. C. Fuson, Reactions of Organic Compounds, Wiley, New York, London, 1962.Google Scholar
  31. 31.
    A. H. Haines, Methods for the oxidation of organic compounds, Academic Press, London, 1988.Google Scholar
  32. 32.
    V. A. Voblikova, Yu. V. Filipov, Vestnik MGU, Ser. 2 (Khimiya), 1986, 26, 267 [Vestn. Mosk. Univ., Ser. Khim. (Engl. Transl.), 1986].Google Scholar
  33. 33.
    J. A. Riddick, W. B. Bunger, Techniques of Chemistry, Vol. 2, Organic Solvents, Wiley, New York, 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. L. Vlasyuk
    • 1
  • V. A. Voblikova
    • 2
  • G. D. Gamalevich
    • 1
  • E. P. Serebryakov
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations