Advertisement

Russian Chemical Bulletin

, Volume 62, Issue 8, pp 1707–1719 | Cite as

Evaluation of the role of “dilution” in ionic crystal formation by analysis of electron density distribution for two solvatomorphs of 4-amino-3,5-dinitropyrazole ammonium salt

  • Yu. V. Nelyubina
  • I. L. Dalinger
  • K. A. Lyssenko
Full Articles
  • 56 Downloads

Abstract

The influence of “dilution” on the peculiarities of supramolecular organization in ionic crystals was analyzed by a detailed analysis of the electron density distribution function recovered by high-resolution X-ray diffraction experiments for two solvatomorphs of 4-amino-3,5-dinitropyrazole ammonium salt. The obtained results show that a decrease in the number of solvate water molecules unexpectedly increases the contribution from the anion-anion interactions to the lattice energy mainly due to the interactions between the π-systems of anions and between the nitro groups, which additionally confirms their binding nature. The latter indicates the general character of tendencies observed for hydrogen bonds and van der Waals interactions in the formation of crystalline materials in molecular and ionic crystals.

Key words

anion-anion interactions charge transfer electron density distribution solvatomorphs topological analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. V. Nelyubina, M. Yu. Antipin, K. A. Lyssenko, Russ. Chem. Rev. (Engl. Transl.), 2010, 79 [Usp. Khim., 2010, 79, 195].Google Scholar
  2. 2.
    P. Dem’yanov, P. Polestshuk, Chem. Eur. J., 2012, 18, 4982.CrossRefGoogle Scholar
  3. 3.
    Y. V. Nelyubina, K. A. Lyssenko, Chem. Eur. J., 2012, 18, 12633.CrossRefGoogle Scholar
  4. 4.
    Energetic Materials. Part 2. Detonation, Combustion., Eds. P. Politzer, J. S. Murray, Elsevier, New Orlean, 2003.Google Scholar
  5. 5.
    Y. S. Chen, A. I. Stash, A. A. Pinkerton, Acta Crystallogr., Sect. B, 2007, 63, 309.CrossRefGoogle Scholar
  6. 6.
    A. Meents, B. Dittrich, S. K. J. Johnas, V. Thome, E. F. Weckert, Acta Crystallogr., Sect. B, 2008, 64, 42.CrossRefGoogle Scholar
  7. 7.
    Y. V. Nelyubina, I. L. Dalinger, K. A. Lyssenko, Angew. Chem. Int., Ed. Engl., 2011, 50, 2892.CrossRefGoogle Scholar
  8. 8.
    Y. V. Nelyubina, I. V. Glukhov, M. Y. Antipin, K. A. Lyssenko, Chem. Commun., 2010, 46, 3469.CrossRefGoogle Scholar
  9. 9.
    Y. V. Nelyubina, M. Y. Antipin, I. A. Cherepanov, K. A. Lyssenko, CrystEngComm, 2010, 12, 77.CrossRefGoogle Scholar
  10. 10.
    Y. V. Nelyubina, M. Y. Antipin, K. A. Lyssenko, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 751 [Izv. Akad. Nauk, Ser. Khim., 2009, 4, 735].CrossRefGoogle Scholar
  11. 11.
    C. Gatti, C. F. Matta, Modern Charge-Density Analysis, Springer, Berlin, 2012.CrossRefGoogle Scholar
  12. 12.
    N. K. Hansen, P. Coppens, Acta Crystallogr., Sect. A, 1978, 34, 909.CrossRefGoogle Scholar
  13. 13.
    V. G. Tsirelso, R. P. Ozerov, Electron Density and Bonding in Crystals: Principles, Theory and X-Ray Diffraction Experiments in Solid State Physics and Chemistry, IOP Publ. Ltd., Bristol and Philadelphia, 1996.Google Scholar
  14. 14.
    R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendron Press, Oxford, 1990.Google Scholar
  15. 15.
    E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170.CrossRefGoogle Scholar
  16. 16.
    E. Espinosa, I. Alkorta, I. Rozas, J. Elguero, E. Molins, Chem. Phys. Lett., 2001, 336, 457.CrossRefGoogle Scholar
  17. 17.
    K. A. Lyssenko, Mendeleev Commun., 2012, 22, 1.CrossRefGoogle Scholar
  18. 18.
    I. L. Dalinger, I. A. Vatsdze, T. K. Shkineva, G. P. Popova, S. A. Shevelev, Y. V. Nelyubina, J. Het. Chem., 2013, JW-JHET110284.Google Scholar
  19. 19.
    G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.CrossRefGoogle Scholar
  20. 20.
    A. Volkov, P. Macchi, L. J. Farrugia, C. Gatti, P. Mallinson, T. Richter, T. Koritsanszky, XD2006 — a computer program for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental or theoretical structure factors, 2006.Google Scholar
  21. 21.
    B. Dittrich, C. B. Hubschle, K. Propper, F. Dietrich, T. Stolper, J. J. Holstein, Acta Crystallogr., Sect. B, 69, 91.Google Scholar
  22. 22.
    B. Dittrich, T. Koritsanszky, A. Volkov, S. Mebs, P. Luger, Angew. Chem., Int. Ed. Engl., 2007, 46, 2935.CrossRefGoogle Scholar
  23. 23.
    D. A. Kirzhnits, Yu. E. Lozovik, G. V. Shpatakovskaya, Usp. Fiz. Nauk, 1975, 117, 3 [Sov. Phys. Usp., 1975, 18, 649].CrossRefGoogle Scholar
  24. 24.
    A. Stash, V. Tsirelson, J. Appl. Crystallogr., 2002, 35, 371.CrossRefGoogle Scholar
  25. 25.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, Gaussian 09, Revision A.1, 2009.Google Scholar
  26. 26.
    T. A. Keith, AIMAll (Version 10.12.13), 2010, http://aim.tkgristmill.com.Google Scholar
  27. 27.
    J. J. Holstein, P. Luger, R. Kalinowski, S. Mebs, C. Paulmann, B. Dittrich, Acta Crystallogr., Sect. B, 2010, 66, 568.CrossRefGoogle Scholar
  28. 28.
    C. B. Hubschle, P. Luger, B. Dittrich, J. Appl. Cryst., 2007, 40, 623.CrossRefGoogle Scholar
  29. 29.
    F. L. Hirshfeld, Acta Crystallogr., Sect. A, 1976, 32, 239.CrossRefGoogle Scholar
  30. 30.
    K. A. Lyssenko, P. Y. Barzilovich, Y. V. Nelyubina, E. A. Astaf’ev, M. Y. Antipin, S. M. Aldoshin, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 31 [Izv. Akad. Nauk, Ser. Khim., 2009, 31].CrossRefGoogle Scholar
  31. 31.
    M. Meot-Ner, Chem. Rev., 2005, 105, 213.CrossRefGoogle Scholar
  32. 32.
    Y. V. Nelyubina, P. Y. Barzilovich, M. Y. Antipin, S. M. Aldoshin, K. A. Lyssenko, ChemPhysChem, 2011, DOI: 10.1002/cphc.201100294.Google Scholar
  33. 33.
    K. A. Lyssenko, Y. V. Nelyubina, R. G. Kostyanovsky, M. Y. Antipin, ChemPhysChem, 2006, 7, 2453.CrossRefGoogle Scholar
  34. 34.
    K. A. Lyssenko, M. Y. Antipin, Russ. Chem. Bull. (Int. Ed.), 2001, 50, 418 [Izv. Akad. Nauk, Ser. Khim., 2001, 50, 400].CrossRefGoogle Scholar
  35. 35.
    P. M. Dominiak, E. Grech, G. Barr, S. Teat, P. Mallinson, K. Wozniak, Chem. Eur. J., 2003, 9, 963.CrossRefGoogle Scholar
  36. 36.
    I. V. Fedyanin, K. A. Lyssenko, CrystEngComm., 2013, 15, 10086.CrossRefGoogle Scholar
  37. 37.
    A. I. Kitaigorodskii, Molekulyarnye kristally [Molecular Crystals], Nauka, Moscow, 1971 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yu. V. Nelyubina
    • 1
  • I. L. Dalinger
    • 2
  • K. A. Lyssenko
    • 1
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations