Russian Chemical Bulletin

, Volume 62, Issue 7, pp 1564–1569 | Cite as

X-ray photoelectron spectroscopy investigation of perovskites La1−x Sr x FeO3−y (0 ≤x < 1.0), prepared via a mechanochemical route

  • L. A. Isupova
  • I. P. Prosvirin
Full Articles


Perovskite-structure oxides La1−x Sr x FeO3−y (x = 0, 0.2, 0.6, 1) were synthesized by the mechanochemical method. In order to refine the stoichiometric composition and the charge state of ions, these samples were studied by X-ray photoelectron spectroscopy (XPS). An investigation of perovskites with x = 0, 0.2, and 0.6 in air at room temperature showed that these samples do not contain oxygen vacancies (y = 0), i.e., they are fully oxidized. Hence, to produce electrical neutrality, these samples should contain iron(4+) cations in an amount proportional to the degree of substitution (x) of strontium(2+) for lanthanum(3+). However, no Fe4+ cations were found in the oxides. All perovskites contain only Fe3+ cations, oxygen ions O2− along with oxygen ions with reduced electron density (O). These data provid evidence of the possible electron density redistribution from oxygen ions to iron cations. The fact that the oxides contain oxygen ions with reduced electron density suggests that weakly bound lattice oxygen in substituted perovskites is represented by O ions.

Key words

perovskites X-ray photoelectron spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Seiyama, Catal. Rev.-Sci. Eng., 1991, 34, 281.CrossRefGoogle Scholar
  2. 2.
    L. G. Tejuca, J. L. G. Fierro, J. M. D. Tascon, Adv. Catal., 1989, 36, 237.CrossRefGoogle Scholar
  3. 3.
    E. J. Baran, Catal. Today, 1990, 8, 133.CrossRefGoogle Scholar
  4. 4.
    Yue Wu, Tao Yu, Bo-Sheng, Dou, Cheng-xian Wang, Xiaofan Xie, Zuo-long Yu, Shu-rong Fan, Zhi-rong Fan, Lianchi Wang, J. Catal., 1989, 120, 88.CrossRefGoogle Scholar
  5. 5.
    J.-C. Grenier, M. Pouchard, P. Hagenmuller, Structure and Bonding, Springer-Verlag, Berlin-Heidelberg, 1981, 47, 1.Google Scholar
  6. 6.
    J.-C. Grenier, L. Fournes, M. Pouchard, P. Hagenmuller, S. Komornicky, Mat. Res. Bull., 1982, 17, 55.CrossRefGoogle Scholar
  7. 7.
    P. Ciambell, S. Cimino, L. Lisi, M. Faticanti, G. Minelli, I. Pettini, P. Porta, Appl. Catal. B, 2001, 33, 193.CrossRefGoogle Scholar
  8. 8.
    L. A. Isupova, I. S. Yakovleva, G. M. Alikina, V. A. Rogov, V. A. Sadykov, Kinet. Katal., 2005, 46, 773 [Kinet. Catal. (Engl. Transl.), 2005, 46]..CrossRefGoogle Scholar
  9. 9.
    A. N. Nadeev, Ph. D. (Phys.-Math.) Thesis, G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2008, 169 pp. (in Russian).Google Scholar
  10. 10.
    A. N. Nadeev, S. V. Tsybulya, I. S. Yakovleva, L. A. Isupova, Acta Crystallogr., 2008, Suppl. A64, 520.Google Scholar
  11. 11.
    L. A. Isupova, Y. T. Pavlyukhin, V. A. Rogov, G. M. Alikina, S. V. Tsybulya, I. S. Yakovleva, V. A. Sadykov, MRS Symp. Proc., 2005, 848, 511.Google Scholar
  12. 12.
    E. de Lacheisserie, D. Gignoux, M. Schlenker, Magnetism: Fundamentals, Springer, Berlin-New York, 2005, 1, 507 pp.CrossRefGoogle Scholar
  13. 13.
    N. A. Ovechkina, V. R. Galakhov, K. Kyupper, M. Noimann, M. Mateuchchi, Ya. M. Mukovskii, Tez. XXX Mezhdunar. Zimnei Shkoly Fizikov-Teoretikov “Kourovka-2004” [Abstrs. of Papers, XXX Int. Winter School of Theoretical Physicists “Kourovka-2004”], Yekaterinburg, 2004, 49 (in Russian).Google Scholar
  14. 14.
    V. R. Galakhov, M. Demetr, S. Batrakovski, M. Neu- mann, N. A. Ovechkina, E. Z. Kurmaev, N. I. Lobacevskaya, Y. M. Mukovskii, J. Mitchell, Phys. Rev. B, 2002, 65, 113102.CrossRefGoogle Scholar
  15. 15.
    I. S. Yakovleva, L. A. Isupova, S. V. Tsybulya, A. V. Chernysh, G. N. Kryukova, V. N. Kolomiichuk, S. N. Trukhan, Yu. T. Pavlyuhin, A. V. Rogov, V. A. Sadykov, J. Mater. Sci., 2004, 39, 5517.CrossRefGoogle Scholar
  16. 16.
    A. N. Nadeev, S. V. Tsybulya, A. N. Shmakov, G. N. Kryu- kova, I. S. Yakovleva, L. A. Isupova, Zh. Strukt. Khim., 2007, 48, 1170 [J. Appl. Struct. (Engl. Transl.), 2007, 48].Google Scholar
  17. 17.
    J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Ed. J. Chastain, Perkin-Elmer, Eden Prairie, Minnesota, 1978.Google Scholar
  18. 18.
    M. Descostes, F. Mercier, N. Thromat, C. Beaucaire, M. Gautier-Soyer, Appl. Surf. Sci., 2000, 165, 288.CrossRefGoogle Scholar
  19. 19.
    N. C. McIntyre, D. G. Zetaruk, Anal. Chem., 1977, 49, 1521.CrossRefGoogle Scholar
  20. 20.
    H. Abdel-Samad, P. R. Watson, Appl. Surf. Sci., 1977, 108, 371.CrossRefGoogle Scholar
  21. 21.
    S. J. Roosendaal, B. van Asselen, J. W. Elsenaar, A. M. Vredenberg, F. H. P. M. Habraken, Surf. Sci., 1999, 442, 329.CrossRefGoogle Scholar
  22. 22.
    I. Z. Boukha, L. Fitian, M. López-Haro, M. Mora, J. R. Ruiz, C. Jiménez-Sanchidrián, G. Blanco, J. J. Calvino, G. A. Cifredo, S. Trasobares, S. Bernal, J. Catal., 2010, 272, 121.CrossRefGoogle Scholar
  23. 23.
    J. S. Ledford, M. Houalla, A. Proctor, D. M. Gercules, L. Petrakis, J. Phys. Chem., 1989, 93, 6770.CrossRefGoogle Scholar
  24. 24.
    M. Shelef, L. P. Haack, R. E. Soltis, J. E. deVries, E. M. Logothetis, J. Catal., 1992, 137, 114.CrossRefGoogle Scholar
  25. 25.
    A. Galtayries, G. Blanco, G. A. Cifredo, D. Finol, J. M. Gatica, J. M. Pintado, H. Vidal, R. Sporken, S. Bernal, Surf. Interface Anal., 1999, 27, 941.CrossRefGoogle Scholar
  26. 26.
    J. N. Kuhn, U. S. Ozkan, J. Catal., 2008, 253, 200.CrossRefGoogle Scholar
  27. 27.
    P. A. W. van der Heide, Surf. Interface Anal., 2002, 33, 414.CrossRefGoogle Scholar
  28. 28.
    P. A. W. van der Heide, J. Elect. Spectr. Related. Phenom., 2006, 151, 79.CrossRefGoogle Scholar
  29. 29.
    K. Rida, A. Benabbas, F. Bouremmad, M. A. Pena, A. Martinez-Arias, Catal. Commun., 2006, 7, 963.CrossRefGoogle Scholar
  30. 30.
    J. L. Hueso, A. Caballero, M. Ocana, A. R. Gonzalez-Elipe, J. Catal., 2008, 257, 334.CrossRefGoogle Scholar
  31. 31.
    M. I. Ivanovskaya, D. A. Kotikov, V. V. Pan’kov, V. A. Zyryanov, Neorg. Mater., 2009, 45, 981 [Inorg. Mater. (Engl. Transl.), 2009, 45].Google Scholar
  32. 32.
    U. Kersen, Analyst, 2001, 126, 1377.CrossRefGoogle Scholar
  33. 33.
    V. N. Stathopoulos, V. C. Belessi, T. V. Bakas, S. G. Neophytides, C. N. Costa, P. J. Pomonis, Appl. Catal., B, 2000, 93, 1.CrossRefGoogle Scholar
  34. 34.
    V. G. Milt, R. Spretz, M. A. Ulla, E. A. Lombardo, J. L. Garcia Fierro, Catal. Lett., 1996, 42, 57.CrossRefGoogle Scholar
  35. 35.
    D. V. Ivanov, L. G. Pinaeva, L. A. Isupova, E. M. Sadovskaya, I. P. Prosvirin, E. Yu. Gerasimov, L. S. Dovlitova, Appl. Catal., A, 2013, 457, 42.CrossRefGoogle Scholar
  36. 36.
    C. V. Ramana, R. S. Vemuri, V. V. Kaichev, V. A. Kochubey, A. A. Saraev, V. V. Atuchin, ACS Appl. Mater. Interfaces, 2011, 3, 4370.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.G. K. Boreskov Institute of CatalysisSiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations