Advertisement

Russian Chemical Bulletin

, Volume 62, Issue 4, pp 994–1002 | Cite as

Influence of the supramolecular structure of the liquid reaction medium on the kinetics of acetone oxidation with aqueous solutions of nitric acid

  • G. B. Manelis
  • G. V. Lagodzinskaya
  • A. I. Kazakov
  • A. V. Chernyak
  • N. G. Yunda
  • L. S. Kurochkina
Full Articles

Abstract

Refined kinetic characteristics for the initial stage of acetone oxidation using purified nitric acid were obtained by dynamic calorimetry and NMR spectroscopy. The differences of obtained characteristics from the literature data are significant. The dependences of the 17O NMR spectra in the HNO3-H2O binary system and 1H NMR spectra in the ternary system with acetone on the reactant concentration were studied in detail. The character of the supramolecular structure of the reaction medium and its influence on the initial rate of acetone oxidation are discussed.

Key words

kinetics mechanism oxidation acetone nitric acid supramolecular structure of liquid reaction medium dynamic calorimetry NMR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. I. Rubtsov, A. I. Kazakov, T. V. Sorokina, G. B. Manelis, Russ. Chem. Bull. (Int. Ed.), 2008, 57, 2065 [Izv. Akad. Nauk, Ser. Khim., 2008, 2028].CrossRefGoogle Scholar
  2. 2.
    G. V. Lagodzinskaya, N. G. Yunda, G. B. Manelis, Russ. Chem. Bull. (Int. Ed.), 2006, 55, 597 [Izv. Akad. Nauk, Ser. Khim., 2006, 577].CrossRefGoogle Scholar
  3. 3.
    M. Sedlak, J. Phys. Chem. B, 2006, 110, 4329; 4339; 13976.CrossRefGoogle Scholar
  4. 4.
    G. Malenkov, Y. Naberukhin, V. Voloshin, Struct Chem., 2011, 22, 459; G. G. Malenkov, Yu. I. Naberukhin, V. P. Voloshin, Ros. Khim. Zh. (Zh. Ros. Khim. o-va im. D. I. Mendeleeva), 2009, 53, No. 6, 25 [Mendeleev Chem. J. (Engl. Transl.), 2009, 53, No. 6].CrossRefGoogle Scholar
  5. 5.
    T. A. Yinnon, C. A. Yinnon, Modern Phus. Lett. B., 2012, 26, 1150006.CrossRefGoogle Scholar
  6. 6.
    I. S. Ryzhkina, L. I. Murtazina, Yu. V. Kiseleva, A. I. Konovalov, Dokl. Akad. Nauk, 2009, 428, 487 [Dokl. Chem. (Engl. Transl.), 2009].Google Scholar
  7. 7.
    S. Samal, R. F. Gackeler, Chem. Commun., 2001, 2224.Google Scholar
  8. 8.
    R. P. Tiger, Doct. Sci. (Chem.) Thesis, Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow, 1979 (in Russian); D. N. Tarasov, Ph. D. (Phys.-Math.) Thesis, Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow, 1999 (in Russian).Google Scholar
  9. 9.
    G. Cainelli, P. Galletti, D. Giacomini, Chem. Soc. Rev., 2009, 38, 990.CrossRefGoogle Scholar
  10. 10.
    L. O. Kononov, N. N. Malysheva, A. V. Orlova, A. I. Zinin, T. V. Laptinskaya, E. G. Kononova, N. G. Kolotyrkina, Eur. J. Org. Chem., 2012, 1926; L. O. Kononov, N. N. Malysheva, A. V. Orlova, Eur. J. Org. Chem., 2009, 611; F. Yang, Y. Zhu, B. Yu, Chem. Commun., 2012, 48, 7097.Google Scholar
  11. 11.
    Y. Uchinashi, M. Nagasaki, J. Zhou, K. Tanaka, K. Fukase, Org. Biomol. Chem., 2011, 9, 7243.CrossRefGoogle Scholar
  12. 12.
    G. V. Lagodzinskaya, G. B. Manelis, Z. K. Nikitina, V. I. Shestov, V. Ya. Rosolovskii, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1985, 21, 781 [Izv. Akad. Nauk SSSR, Ser. Khim., 1985, 781].Google Scholar
  13. 13.
    H. S. Gutowsky, A. Saika, J. Chem. Phys., 1953, 21, 1688.CrossRefGoogle Scholar
  14. 14.
    G. V. Lagodzinskaya, M. V. Loginova, G. B. Manelis, Abstr. IX Intern. Conf. “The Problems of Solvation and Complex Formation in Solution,” Ples, Russia, 2004, p. 207.Google Scholar
  15. 15.
    J.-P. Kintzinger, in Nuclear Magnetic Resonance, Basic Principles and Progress, Eds P. Diehl, E. Fluck, R. Kosfeld, Springer, Berlin, 1981, 17, 1; T. St. Amour, D. Fiat, Bull. Magn. Res., 1980, 1, 118.Google Scholar
  16. 16.
    F. Weinhold, J. Mol. Srtuct. (THEOCHEM), 1997, 398–399, 181.CrossRefGoogle Scholar
  17. 17.
    G. R. Chuev, M. V. Bazilevskii, Russ. Chem. Rev. (Engl. Transl.), 2003, 72, 735 [Usp. Khim., 2003, 72, 827].CrossRefGoogle Scholar
  18. 18.
    K. R. Leopold, Annu. Rev. Phys. Chem., 2011, 62, 327.CrossRefGoogle Scholar
  19. 19.
    J. R. Scott, J. B. Wright, J. Phys. Chem. A, 2004, 108, 10578.CrossRefGoogle Scholar
  20. 20.
    H. Kobara, A. Wakisaka, K. Takeuchi, T. Ibusuki, J. Phys. Chem. A, 2002, 106, 4779.CrossRefGoogle Scholar
  21. 21.
    V. A. Granzhan, S. K. Laktionova, Plotnost’, vyazkost’ i poverkhnostnoe natyazhenie vodnykh rastvorov azotnoi kisloty [Density, Viscosity, and Surface Tension of Aqueous Solutions of Nitric Acid], Moscow, 1975, 22 pp.; deposited with VINITI 12.05.75, No. 1677—75 (in Russian).Google Scholar
  22. 22.
    N. M. Emanuel’, D. G. Knorre, Kurs khimicheskoi kinetiki [The Course of Chemical Kinetics], Vysshaya Shkola, Moscow, 1969, 431 pp. (in Russian).Google Scholar
  23. 23.
    A. Perera, F. Sokolic, L. Almásy, P. Westh, Y. Koga, J. Chem. Phys., 2005, 123, 24503.CrossRefGoogle Scholar
  24. 24.
    S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney A. K. Soper, Nature, 2002, 416, 829.CrossRefGoogle Scholar
  25. 25.
    C. Mello, T. Mello, E. Sevéri, L. Coelho, D. Ribeiro, A. Marangoni, R. J. Poppi, I. Noda, J. Chem. Phys., 2009, 131, 084501.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • G. B. Manelis
    • 1
  • G. V. Lagodzinskaya
    • 1
  • A. I. Kazakov
    • 1
  • A. V. Chernyak
    • 1
  • N. G. Yunda
    • 1
  • L. S. Kurochkina
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations