Advertisement

Russian Chemical Bulletin

, Volume 62, Issue 2, pp 355–362 | Cite as

Quantum chemical modeling of the stability of reduced forms of Roussin’s red esters. Effect of the nature of the ligand

  • N. S. Emel’yanova
  • A. F. Shestakov
  • N. A. Sanina
  • S. M. Aldoshin
Full Articles

Abstract

The reduced forms of Roussin’s red esters [Fe2(μ-RS)2(NO)4]n− (n = 1, 2; R = Ph, Pr) and their possible decomposition products were studied by quantum chemical calculations. The energy diagram of the processes that occur in a dichloromethane solution was constructed. According to this diagram, the monoanions are much more stable than the corresponding dianions. Possible dissociation paths of the dianions in solution were proposed. The anions with the propyl ligand are more stable than the anions with the phenyl ligand.

Key words

Roussin’s red esters nitrosyl iron complexes redox potentials density functional theory (DFT) BP86 functional polarizable continuum model (PCM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kalyvas, D. Coucouvanis, Inorg. Chem., 2006, 45, 8462.CrossRefGoogle Scholar
  2. 2.
    N. A. Sanina, T. N. Rudneva, I. V. Sulimenkov, N. P. Konovalova, T. E. Sashenkova, S. M. Aldoshin, Ross. Khim. Zh., 2009, 53, 164 [Mendeleev Chem. J. (Engl. Transl.), 2009, 53].Google Scholar
  3. 3.
    N. A. Sanina, O. S. Zhukova, Z. S. Smirnova, L. M. Borisova, M. P. Kiseleva, S. M. Aldoshin, Ross. Bioterapevt. Zh. [Russ. J. Biotherapy], 2008, 1, 52 (in Russian).Google Scholar
  4. 4.
    M. Jaworska, Z. Stasicka, N. J. Chem., 2005, 29, 604.CrossRefGoogle Scholar
  5. 5.
    L. Li, R. Wang, M. A. Camacho-Fernandez, W. Xu, J. Zhang, J. Biol. Inorg. Chem., 2009, 14, 132.Google Scholar
  6. 6.
    J. Conradie, D. A. Quarless, Jr., H.-F. Hsu, T. C. Harrop, S. J. Lippard, S. A. Koch, A. Ghosh, J. Am. Chem. Soc., 2007, 128, 104461.Google Scholar
  7. 7.
    I.-J. Hsu, C.-H. Hsieh, S.-C. Ke, K.-A. Chiang, J.-M. Lee, J.-M. Chen, L.-Y. Jang, G.-H. Lee, Y. Wang, W.-F. Liaw, J. Am. Chem. Soc., 2007, 129, 1151.CrossRefGoogle Scholar
  8. 8.
    K. H. Hopmann, J. Conradie, A. Ghosh, J. Phys. Chem. B, 2009, 113, 10540.CrossRefGoogle Scholar
  9. 9.
    K. H. Hopmann, L. Noodleman, A. Ghosh, Chem. Eur. J., 2010, 16, 10397.CrossRefGoogle Scholar
  10. 10.
    J. Pellegrino, R. Hubner, F. Doctorovich, W. Kaim, Chem. Eur. J., 2011, 17, 7868.CrossRefGoogle Scholar
  11. 11.
    S. M. Brothers, M. Y. Darensbourg, M. B. Hall, Inorg. Chem., 2011, 50, 8532.CrossRefGoogle Scholar
  12. 12.
    Sh. Ye, F. Neese, J. Am. Chem. Soc., 2010, 132, 3646.CrossRefGoogle Scholar
  13. 13.
    A. Crayston, C. Glidewell, R. J. Lambert, Polyhedron, 1990, 9, 1741.CrossRefGoogle Scholar
  14. 14.
    R. Wang, M. A. Camacho-Fernandez, W. Xu, J. Zhang, L. Li, Dalton Trans., 2009, 777.Google Scholar
  15. 15.
    C. Glidewell, R. J. Lambert, Polyhedron, 1992, 11, 2803.CrossRefGoogle Scholar
  16. 16.
    C.-C. Tsou, T.-T. Lu, W.-F. Liaw, J. Am. Chem. Soc., 2007, 129, 12626.CrossRefGoogle Scholar
  17. 17.
    N. S. Emel’yanova, A. F. Shestakov, N. A. Sanina, Int. J. Quant. Chem., 2012, 113, 740.CrossRefGoogle Scholar
  18. 18.
    N. S. Emel’yanova, A. F. Shestakov, N. A. Sanina, Russ. Chem. Bull. (Int. Ed.), 2011, 60, 1352 [Izv. Akad. Nauk, Ser. Khim., 2011, 1329].CrossRefGoogle Scholar
  19. 19.
    N. A. Sanina, A. G. Krivenko, R. A. Manzhos, N. S. Emel’yanova, K. V. Bozhenko, S. M. Aldoshin, Russ. Chem. Bull. (Int. Ed.), 2012, 61, 1860 [Izv. Akad. Nauk, Ser. Khim., 2012, 1844].CrossRefGoogle Scholar
  20. 20.
    C.-N. Chau, A. Wojcicki, Polyhedron, 1992, 11, 851.CrossRefGoogle Scholar
  21. 21.
    E. A. Astaf’ev, Tsiklicheskaya vol’tamperometriya pri razlichnykh skorostyakh i avtomaticheskie diapazony toka [Cyclic Voltammetry at Different Rates and Automated Current Ranges], OOO Elins, Chernogolovka, 2012, 5 (in Russian).Google Scholar
  22. 22.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford (CT), 2004.Google Scholar
  23. 23.
    S. Miertus, J. Tomasi, Chem. Phys., 1982, 65, 239.CrossRefGoogle Scholar
  24. 24.
    N. A. Sanina, N. S. Emel’yanova, A. N. Chekhlov, A. F. Shestakov, I. V. Sulimenkov, S. M. Aldoshin, Russ. Chem. Bull. (Int. Ed.), 2010, 59, 1126 [Izv. Akad. Nauk, Ser. Khim., 2010, 1104].CrossRefGoogle Scholar
  25. 25.
    N. S. Emelyanova, A. F. Shestakov, I. V. Sulimenkov, T. N. Rudneva, N. A. Sanina, S. M. Aldoshin, Russ. Chem. Bull. (Int. Ed.), 2012, 61, 1 [Izv. Akad. Nauk, Ser. Khim., 2012, 1].CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. S. Emel’yanova
    • 1
  • A. F. Shestakov
    • 1
  • N. A. Sanina
    • 1
  • S. M. Aldoshin
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations