Russian Chemical Bulletin

, Volume 61, Issue 12, pp 2212–2217 | Cite as

Solvent effects on tamoxifen molecule interacting with a single-walled carbon nanotube: a theoretical NMR study

  • F. Mollaamin
  • K. Shahani pour
  • K. Shahani pour
  • A. R. Ilkhani
  • Z. Sheckari
  • M. Monajjemi
Full Articles


Quantum chemical calculations of the electronic structure of tamoxifen molecule interacting with an open end of a single-walled carbon nanotube (SWCNT) were carried out and the effects of solvents (water, methanol, DMSO, acetone) on the 1H, 13C, 15N, and 17O NMR parameters were studied by the GIAO-HF/STO-3G, GIAO-HF/3-21G, and GIAO/B1LYP/3-21G methods using the GAUSSIAN-98 program. The largest σiso value was obtained for acetone, whereas the smallest one for water. The opposite trend was obtained for the shielding asymmetry η. According to calculations, atoms at interaction site bear negative charges. The O(43) and N(38) atoms produce negative charge because they have high electron affinities. The dipole moment of tamoxifen molecule in different solvents increases with increasing the dielectric constant of the solvent. The largest dipole moment value was obtained for water by the B1LYP/3-21G method.

Key words

single-walled carbon nanotubes tamoxifen drug delivery solvent effect NMR spectra Hartree-Fock method density functional theory SCRF model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. J. A. Furr, V. C. Jordan, Pharmacol. Ther., 1984, 25, 127.CrossRefGoogle Scholar
  2. 2.
    V. C. Jordan, Br. J. Pharmacol., 2006, 147, S269.CrossRefGoogle Scholar
  3. 3.
    L. Wickerham, Breast Cancer Res. Treat., 2002, 75, No. 1, Suppl., 7.CrossRefGoogle Scholar
  4. 4.
    G. J. Goldenberg, E. K. Froese, Cancer Res., 1982, 42, 5147.Google Scholar
  5. 5.
    S. M. Swain, J. Clin. Oncol., 2001, 19, No. 18, Suppl. 1, 93s.Google Scholar
  6. 6.
    P. De Medina, G. Favre, M. Poirot, Curr. Med. Chem.: Anti-Cancer Agents, 2004, 4, 491.CrossRefGoogle Scholar
  7. 7.
    M. Monajjemi, H. Chegini, F. Mollaamin, P. Farahani, Fullerenes Nanotubes Carbon Nanostruct., 2011, 19, 469.CrossRefGoogle Scholar
  8. 8.
    M. Monajjemi, L. Mahdavian, F. Mollaamin, Bull. Chem. Soc. Ethiop., 2008, 22, 277.Google Scholar
  9. 9.
    M. Monajjemi, L. Mahdavian, F. Mollaamin, M. Khaleghianieh, Zh. Neorgan. Khim., 2009, 54, 1536 [Russ. J. Inorg. Chem. (Engl. Transl.), 2009, 54, 1465].Google Scholar
  10. 10.
    S. Iijima, Nature, 1991, 354, 56.CrossRefGoogle Scholar
  11. 11.
    M. Monajjemi, M. Khaleghian, N. Tadayonpour, F. Mollaamin, Int. J. Nanosci., 2010, 9, 517.CrossRefGoogle Scholar
  12. 12.
    G. Gianaurelio, J. Yi, M. Porto, Appl. Phys. Lett., 2002, 81, 850.CrossRefGoogle Scholar
  13. 13.
    D. N. Futaba, J. Goto, T. Yamada, S. Yasuda, M. Yumura, K. Hata, Carbon, 2010, 48, 4542.CrossRefGoogle Scholar
  14. 14.
    D. N. Futaba, T. Yamada, K. Kobashi, M. Yumura, K. Hata, J. Am. Chem. Soc., 2011, 133, 5716.CrossRefGoogle Scholar
  15. 15.
    S. Erkos, Int. J. Mod. Phys. C, 2000, 11, 175.CrossRefGoogle Scholar
  16. 16.
    Y. Lin, S. Taylor, H. Li, K. A. S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y. P. Sun, J. Mater. Chem., 2004, 14, 527.CrossRefGoogle Scholar
  17. 17.
    S. K. Smart, A. I. Cassady, G. Q. Lu, D. J. Martin, Carbon, 2006, 44, 1034.CrossRefGoogle Scholar
  18. 18.
    T. Ramanathan, F. T. Fisher, R. S. Ruoff, L. C. Brinson, Chem. Mater., 2005, 17, 1290.CrossRefGoogle Scholar
  19. 19.
    A. Star, E. Tu, J. Niemann, J.-Ch. P. Gabriel, C. S. Joiner, C. Valcke, Proc. Natl. Acad. Sci. USA, 2006, 103, 921.CrossRefGoogle Scholar
  20. 20.
    C. Hu, Y. Zhang, G. Bao, Y. Zhang, M. Liu, Z. L. Wang, J. Phys. Chem. B, 2005, 109, 20072.CrossRefGoogle Scholar
  21. 21.
    M. E. Hughes, E. Brandin, J. A. Golovchenko, Nano Lett., 2007, 7, 1191.CrossRefGoogle Scholar
  22. 22.
    M. Monajjemi, B. Honarparvar, S. M. Nasseri, M. Khaleghian, Zh. Struktur. Khim., 2009, 50, 73 [J. Struct. Chem. (Engl. Transl.), 2009, 50, 67].Google Scholar
  23. 23.
    F. Mollaamin, I. Layali, A. R. Ilkhani, M. Monajjemi, Afr. J. Microbiol. Res., 2010, 4, 2795.Google Scholar
  24. 24.
    F. Mollaamin, K. Shahanipoor, T. Nejadsattari, M. Monajjemi, Afr. J. Microbiol. Res., 2010, 4, 2098.Google Scholar
  25. 25.
    M. Monajjemi, S. Afsharnezhad, M. R. Jaafari, S. Mirdamadi, F. Mollaamin, H. Monajjemi, Chemistry. Bulg. J. Sci. Educ., 2008, 17, 55.Google Scholar
  26. 26.
    H. Kurosu, G. A. Webb, I. Ando, Magn. Reson. Chem., 1992, 30, 1122.CrossRefGoogle Scholar
  27. 27.
    M. Monajjemi, V. S. Lee, M. Khaleghian, B. Honarparvar, F. Mollaamin, J. Phys. Chem. C, 2010, 114, 15315.CrossRefGoogle Scholar
  28. 28.
    D. B. Chesnut, Annu. Rep. NMR Spectrosc., 1989, 21, 51.CrossRefGoogle Scholar
  29. 29.
    E. M. Brewster, M. J. Huang, E. Pop, N. Bodor, Int. J. Quantum Chem., 1995,343.Google Scholar
  30. 30.
    HyperChem 7.0, Hypecube Inc., Gainesville (FL), 2001.Google Scholar
  31. 31.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian-98, Revision A.7, Gaussian, Inc., Pittsburgh (PA), 1998.Google Scholar
  32. 32.
    M. Monajjemi, M. H Razavian, F. Mollaamin, F. Naderi, B. Honarparvar, Russ. J. Phys. Chem A, 2008, 82, 2277.CrossRefGoogle Scholar
  33. 33.
    F. Mollaamin, M. T Baei, M. Monajjemi, R. Zhiani, B. Honarparvar, Russ. J. Phys. Chem A, 2008, 82, 2354.CrossRefGoogle Scholar
  34. 34.
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  35. 35.
    M. K. Harbola, K. D. Sen, Bull. Mater. Sci., 2003, 26, 69.CrossRefGoogle Scholar
  36. 36.
    M. W. Wong, K. B. Wiberg, M. J. Frisch, J. Am. Chem. Soc., 1992, 114, 1645.CrossRefGoogle Scholar
  37. 37.
    A. Tsolakidis, E. Kaxiras, J. Phys. Chem. A, 2005, 109, 2373.CrossRefGoogle Scholar
  38. 38.
    A. Szarecka, J. Rychlewski, U. Rychlewska, Comput. Methods Sci. Technol., 1998, 4, 25.Google Scholar
  39. 39.
    M. Karelson, A. Lomaka, Arkivoc, 2001, III, 51.Google Scholar
  40. 40.
    M. Monajjemi, M. Noei, F. Mollaamin, Nucleosides Nucleotides Nucleic Acids, 2010, 29, 676.CrossRefGoogle Scholar
  41. 41.
    M. Monajjemi, E. Rajaeian. F. Mollaamin. F. Naderi, S. Saki, Phys. Chem. Liq., 2008, 46, 3299.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • F. Mollaamin
    • 1
  • K. Shahani pour
    • 1
  • K. Shahani pour
    • 2
  • A. R. Ilkhani
    • 3
  • Z. Sheckari
    • 4
  • M. Monajjemi
    • 5
  1. 1.Department of Chemistry, Qom BranchIslamic Azad UniversityQomIran
  2. 2.Department of Biochemistry, Falavarjan BranchIslamic Azad UniversityFalavarjanIran
  3. 3.Department of Chemistry, Yazd BranchIslamic Azad UniversityYazdIran
  4. 4.Department of Chemistry, Gachsaran BranchIslamic Azad UniversityGashsaranIran
  5. 5.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations