Skip to main content
Log in

Solvent effects on tamoxifen molecule interacting with a single-walled carbon nanotube: a theoretical NMR study

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Quantum chemical calculations of the electronic structure of tamoxifen molecule interacting with an open end of a single-walled carbon nanotube (SWCNT) were carried out and the effects of solvents (water, methanol, DMSO, acetone) on the 1H, 13C, 15N, and 17O NMR parameters were studied by the GIAO-HF/STO-3G, GIAO-HF/3-21G, and GIAO/B1LYP/3-21G methods using the GAUSSIAN-98 program. The largest σiso value was obtained for acetone, whereas the smallest one for water. The opposite trend was obtained for the shielding asymmetry η. According to calculations, atoms at interaction site bear negative charges. The O(43) and N(38) atoms produce negative charge because they have high electron affinities. The dipole moment of tamoxifen molecule in different solvents increases with increasing the dielectric constant of the solvent. The largest dipole moment value was obtained for water by the B1LYP/3-21G method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. A. Furr, V. C. Jordan, Pharmacol. Ther., 1984, 25, 127.

    Article  CAS  Google Scholar 

  2. V. C. Jordan, Br. J. Pharmacol., 2006, 147, S269.

    Article  CAS  Google Scholar 

  3. L. Wickerham, Breast Cancer Res. Treat., 2002, 75, No. 1, Suppl., 7.

    Article  Google Scholar 

  4. G. J. Goldenberg, E. K. Froese, Cancer Res., 1982, 42, 5147.

    CAS  Google Scholar 

  5. S. M. Swain, J. Clin. Oncol., 2001, 19, No. 18, Suppl. 1, 93s.

    CAS  Google Scholar 

  6. P. De Medina, G. Favre, M. Poirot, Curr. Med. Chem.: Anti-Cancer Agents, 2004, 4, 491.

    Article  Google Scholar 

  7. M. Monajjemi, H. Chegini, F. Mollaamin, P. Farahani, Fullerenes Nanotubes Carbon Nanostruct., 2011, 19, 469.

    Article  CAS  Google Scholar 

  8. M. Monajjemi, L. Mahdavian, F. Mollaamin, Bull. Chem. Soc. Ethiop., 2008, 22, 277.

    CAS  Google Scholar 

  9. M. Monajjemi, L. Mahdavian, F. Mollaamin, M. Khaleghianieh, Zh. Neorgan. Khim., 2009, 54, 1536 [Russ. J. Inorg. Chem. (Engl. Transl.), 2009, 54, 1465].

    CAS  Google Scholar 

  10. S. Iijima, Nature, 1991, 354, 56.

    Article  CAS  Google Scholar 

  11. M. Monajjemi, M. Khaleghian, N. Tadayonpour, F. Mollaamin, Int. J. Nanosci., 2010, 9, 517.

    Article  CAS  Google Scholar 

  12. G. Gianaurelio, J. Yi, M. Porto, Appl. Phys. Lett., 2002, 81, 850.

    Article  Google Scholar 

  13. D. N. Futaba, J. Goto, T. Yamada, S. Yasuda, M. Yumura, K. Hata, Carbon, 2010, 48, 4542.

    Article  CAS  Google Scholar 

  14. D. N. Futaba, T. Yamada, K. Kobashi, M. Yumura, K. Hata, J. Am. Chem. Soc., 2011, 133, 5716.

    Article  CAS  Google Scholar 

  15. S. Erkos, Int. J. Mod. Phys. C, 2000, 11, 175.

    Article  Google Scholar 

  16. Y. Lin, S. Taylor, H. Li, K. A. S. Fernando, L. Qu, W. Wang, L. Gu, B. Zhou, Y. P. Sun, J. Mater. Chem., 2004, 14, 527.

    Article  CAS  Google Scholar 

  17. S. K. Smart, A. I. Cassady, G. Q. Lu, D. J. Martin, Carbon, 2006, 44, 1034.

    Article  CAS  Google Scholar 

  18. T. Ramanathan, F. T. Fisher, R. S. Ruoff, L. C. Brinson, Chem. Mater., 2005, 17, 1290.

    Article  CAS  Google Scholar 

  19. A. Star, E. Tu, J. Niemann, J.-Ch. P. Gabriel, C. S. Joiner, C. Valcke, Proc. Natl. Acad. Sci. USA, 2006, 103, 921.

    Article  CAS  Google Scholar 

  20. C. Hu, Y. Zhang, G. Bao, Y. Zhang, M. Liu, Z. L. Wang, J. Phys. Chem. B, 2005, 109, 20072.

    Article  CAS  Google Scholar 

  21. M. E. Hughes, E. Brandin, J. A. Golovchenko, Nano Lett., 2007, 7, 1191.

    Article  CAS  Google Scholar 

  22. M. Monajjemi, B. Honarparvar, S. M. Nasseri, M. Khaleghian, Zh. Struktur. Khim., 2009, 50, 73 [J. Struct. Chem. (Engl. Transl.), 2009, 50, 67].

    Google Scholar 

  23. F. Mollaamin, I. Layali, A. R. Ilkhani, M. Monajjemi, Afr. J. Microbiol. Res., 2010, 4, 2795.

    CAS  Google Scholar 

  24. F. Mollaamin, K. Shahanipoor, T. Nejadsattari, M. Monajjemi, Afr. J. Microbiol. Res., 2010, 4, 2098.

    CAS  Google Scholar 

  25. M. Monajjemi, S. Afsharnezhad, M. R. Jaafari, S. Mirdamadi, F. Mollaamin, H. Monajjemi, Chemistry. Bulg. J. Sci. Educ., 2008, 17, 55.

    CAS  Google Scholar 

  26. H. Kurosu, G. A. Webb, I. Ando, Magn. Reson. Chem., 1992, 30, 1122.

    Article  CAS  Google Scholar 

  27. M. Monajjemi, V. S. Lee, M. Khaleghian, B. Honarparvar, F. Mollaamin, J. Phys. Chem. C, 2010, 114, 15315.

    Article  CAS  Google Scholar 

  28. D. B. Chesnut, Annu. Rep. NMR Spectrosc., 1989, 21, 51.

    Article  CAS  Google Scholar 

  29. E. M. Brewster, M. J. Huang, E. Pop, N. Bodor, Int. J. Quantum Chem., 1995,343.

    Google Scholar 

  30. HyperChem 7.0, Hypecube Inc., Gainesville (FL), 2001.

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian-98, Revision A.7, Gaussian, Inc., Pittsburgh (PA), 1998.

    Google Scholar 

  32. M. Monajjemi, M. H Razavian, F. Mollaamin, F. Naderi, B. Honarparvar, Russ. J. Phys. Chem A, 2008, 82, 2277.

    Article  CAS  Google Scholar 

  33. F. Mollaamin, M. T Baei, M. Monajjemi, R. Zhiani, B. Honarparvar, Russ. J. Phys. Chem A, 2008, 82, 2354.

    Article  CAS  Google Scholar 

  34. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.

    Article  CAS  Google Scholar 

  35. M. K. Harbola, K. D. Sen, Bull. Mater. Sci., 2003, 26, 69.

    Article  CAS  Google Scholar 

  36. M. W. Wong, K. B. Wiberg, M. J. Frisch, J. Am. Chem. Soc., 1992, 114, 1645.

    Article  CAS  Google Scholar 

  37. A. Tsolakidis, E. Kaxiras, J. Phys. Chem. A, 2005, 109, 2373.

    Article  CAS  Google Scholar 

  38. A. Szarecka, J. Rychlewski, U. Rychlewska, Comput. Methods Sci. Technol., 1998, 4, 25.

    Google Scholar 

  39. M. Karelson, A. Lomaka, Arkivoc, 2001, III, 51.

    Google Scholar 

  40. M. Monajjemi, M. Noei, F. Mollaamin, Nucleosides Nucleotides Nucleic Acids, 2010, 29, 676.

    Article  CAS  Google Scholar 

  41. M. Monajjemi, E. Rajaeian. F. Mollaamin. F. Naderi, S. Saki, Phys. Chem. Liq., 2008, 46, 3299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monajjemi.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2193–2198, December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollaamin, F., Shahani pour, K., Shahani pour, K. et al. Solvent effects on tamoxifen molecule interacting with a single-walled carbon nanotube: a theoretical NMR study. Russ Chem Bull 61, 2212–2217 (2012). https://doi.org/10.1007/s11172-012-0314-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-012-0314-0

Key words

Navigation