Advertisement

Russian Chemical Bulletin

, Volume 61, Issue 10, pp 1992–1997 | Cite as

Molecular complexation of uracil with bovine serum albumin and its complex with bilirubin studied by spectroscopic methods

  • A. V. Solomonov
  • E. V. Rumyantsev
  • S. P. Ivanov
  • B. A. Kochergin
  • E. V. Antina
Full Articles
  • 71 Downloads

Abstract

The interactions of uracil (U) with bovine serum albumin (BSA) and its complex with bilirubin (BR·BSA) in phosphate buffer at pH 7.4 were studied by fluorescence and electronic spectroscopy. The parameters of the resulting intermolecular complexes (binding constants, quenching rate constants, the radius of the quenching sphere-of-action, etc.) were determined. The interaction of BSA with U occurs through a static quenching of protein fluorescence and has a predominantly hydrophobic character. The effect of U on the conformational changes of the protein molecule was analyzed by synchronous fluorescence spectroscopy. Uracil binds to BR·BSA more efficiently than to the free protein due to the interaction of U with the tetrapyrrole pigment incorporated in the macromolecular complex.

Key words

bovine serum albumin uracil bilirubin fluorescence quenching intermolecular interactions electronic spectroscopy Förster theory synchronous fluorescence Stern-Volmer equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Pshenkina, Farmakologiya [Pharmacology], 2011, 12, 1067 (in Russian).Google Scholar
  2. 2.
    J. Slavík, J. Luminescence, 1997, 72–74, 575.CrossRefGoogle Scholar
  3. 3.
    B. P. Kamat, J. Seetharamappa, M. B. Melwanki, Indian J. Biochem. Biophys., 2004, 41, 173.Google Scholar
  4. 4.
    N. Wang, L. Ye, B. Q. Zhao, J. X. Yu, Brazil. J. Med. Biol. Res., 2008, 41, 589.CrossRefGoogle Scholar
  5. 5.
    A. S. Roy, D. R. Tripany, A. Chatterjee, S. Dasgupta, J. Biophys. Chem., 2010, 1, 141.CrossRefGoogle Scholar
  6. 6.
    H. Xu, Q. Liu, Y. Zuo, Y. Bi, S. Gao, J. Solution Chem., 2008, 38, 15.CrossRefGoogle Scholar
  7. 7.
    H. Zhang, H. Bian, Q. Yu, H. Liang, Z. Chen, Intern. J. Integrative Biol., 2008, 4, 21.Google Scholar
  8. 8.
    T. V. Pyrkov, I. V. Ozerov, E. D. Balitskaya, R. G. Efremov, Bioorg. Khim., 2010, 36, 482 [Russ. J. Bioorg. Chem. (Engl. Transl.), 2010, 36].Google Scholar
  9. 9.
    E. V. Kudryashova, A. K. Gladilin, A. V. Levashov, Usp. Biol. Khim., 2002, 42, 257 [Biol. Chem. Rev. (Engl. Transl.), 2002, 42].Google Scholar
  10. 10.
    C. Bertucci, S. Cimitan, J. Pharmaceuti. Biomed. Anal., 2003, 32, 707.CrossRefGoogle Scholar
  11. 11.
    H.-J. Böhm, G. Schneider, Protein-Ligand Interactions: from Molecular Recognition to Drug-Design, Wiley-VCH, Weinheim, Germany, 2003, 262 pp.CrossRefGoogle Scholar
  12. 12.
    J. Neuiil, R. Stocker, FEBS Lett., 1993, 331, 281.CrossRefGoogle Scholar
  13. 13.
    E. P. Reddy, V. S. Reddy, C. K. Mouli, P. V. L. N. S Rao, Online J. Health Allied Sci., 2009, 8, 1.Google Scholar
  14. 14.
    E. V. Antina, E. V. Rumyantsev, Khimiya bilirubina i ego analogov [Chemistry of Bilirubin and Its Analogs], KRASAND, Moscow, 2009, 352 pp. (in Russian).Google Scholar
  15. 15.
    R. Stocker, A. Glazer, B. Ames, Proc. Natl. Acad. Sci. USA, 1987, 84, 5918.CrossRefGoogle Scholar
  16. 16.
    G. R. Akhatova, I. V. Safarova, A. Ya. Gerchikov, Kinet. Katal., 2011, 52, 3 [Kinet. Catal. (Engl. Transl.), 2011, 52, 1].CrossRefGoogle Scholar
  17. 17.
    S. Bakkialakshmi, D. Chandrakala, Arch. Appl. Sci. Res., 2011, 3, 174.Google Scholar
  18. 18.
    N. N. Kabal’nova, S. A. Grabovskii, T. R. Nugumanov, S. P. Ivanov, Yu. I. Murinov, Russ. Chem. Bull. (Int. Ed.), 2008, 57, 2265 [Izv. Akad. Nauk, Ser. Khim., 2008, 2223].CrossRefGoogle Scholar
  19. 19.
    L. Fraiji, D. Hayes, T. Werner, J. Chem. Educ., 1992, 69, 424.CrossRefGoogle Scholar
  20. 20.
    J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York, 2006, 958 p.CrossRefGoogle Scholar
  21. 21.
    H. Xu, Q. Liu, Y. Zuo, Y. Bi, S. Gao, J. Solution Chem., 2009, 38, 15.CrossRefGoogle Scholar
  22. 22.
    L. Trnková, I. Bošová, L. Ryšánková, P. Vrabcová, J. Dršata, Proc. ECOpole, 2009, 3, 27.Google Scholar
  23. 23.
    S. P. Ivanov, Ph. D. (Chem.) Thesis, Institute of Organic Chemistry of the Ufa Scientific Center of the Russian Academy of Sciences, Ufa, 2003, 22 pp. (in Russian).Google Scholar
  24. 24.
    T. Förster, O. Sinanoglu, Modern Quantum Chemistry, Academic Press, New York, 1966, Vol. 3, 93 pp.Google Scholar
  25. 25.
    D. Stan, I. Matei, C. Mihailescu, M. Savin, M. Matache, M. Hillebrand, I. Baciu, Molecules, 2009, 14, 1614.CrossRefGoogle Scholar
  26. 26.
    J. N. Miller, Proc. Anal. Div. Chem. Soc., 1979, 16, 203.Google Scholar
  27. 27.
    H. C. Tai, Master Degree Thes., University of Saskatchewan, Saskatoon, Canada, 2004, 154 pp.Google Scholar
  28. 28.
    T. Peter, Adv. Protein Chem., 1985, 37, 161.CrossRefGoogle Scholar
  29. 29.
    P. B. Kandagal, S. Ashoka, J. Seetharamappa, J. Pharm. Biomed. Anal., 2006, 41, 393.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • A. V. Solomonov
    • 1
  • E. V. Rumyantsev
    • 1
  • S. P. Ivanov
    • 2
  • B. A. Kochergin
    • 1
  • E. V. Antina
    • 1
    • 3
  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussian Federation
  2. 2.Institute of Organic ChemistryUfa Scientific Center of the Russian Academy of SciencesUfaRussian Federation
  3. 3.G. A. Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussian Federation

Personalised recommendations