Advertisement

Russian Chemical Bulletin

, Volume 61, Issue 6, pp 1176–1181 | Cite as

Decomposition of sodium hypochlorite in an aqueous solution in the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) nitroxyl radical as a catalyst

  • I. Yu. Ponedel’kina
  • E. A. Khaibrakhmanova
  • D. Sh. Sabirov
  • V. N. Odinokov
Full Articles

Abstract

Nitroxyl radical TEMPO is found to catalyze the decomposition of sodium hypochlorite in an aqueous-alkali medium. The mechanism of NaOCl decomposition to form ClO· radical is proposed which involves protonated TEMPO, oxoammonium salt TEMPO+, and hydroxyl radical.

Key words

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) catalytic decomposition of sodium hypochlorite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. J. de Nooy, A. C. Besemer, H. van Bekkum, Synthesis, 1996, 10, 1153.CrossRefGoogle Scholar
  2. 2.
    I. Yu. Ponedel’kina, E. A. Khaibrakhmanova, V. N. Odinokov, Usp. Khim., 2010, 79, 65 [Russ. Chem. Rev. (Engl. Transl.), 2010, 79, 63].Google Scholar
  3. 3.
    P. L. Bragd, H. van Bekkum, A. C. Besemer, Top. Catal., 2004, 27, 49.CrossRefGoogle Scholar
  4. 4.
    A. E. J. de Nooy, A. C. Besemer, H. van Bekkum, Carbohydr. Res., 1995, 269, 89.CrossRefGoogle Scholar
  5. 5.
    A. Jiang, E. Drouet, M. Milas, M. Rinaudo, Carbohydr. Res., 2000, 327, 455.CrossRefGoogle Scholar
  6. 6.
    Y. Kato, R. Matsuo, A. Isogai, Carbohydr. Polym., 2003, 69, 51.Google Scholar
  7. 7.
    M. H. Hashmi, A. A. Ayaz, A. Rashid, E. Ali, Anal. Chem., 1964, 36, 1379.CrossRefGoogle Scholar
  8. 8.
    D. M. Stanbury, Adv. Inorg. Chem., 1989, 33, 69.CrossRefGoogle Scholar
  9. 9.
    J. R. Fish, S. G. Swarts, M. D. Sevilla, T. Malinski, J. Phys. Chem., 1988, 92, 3745.CrossRefGoogle Scholar
  10. 10.
    L. C. Adam, I. Fabian, K. Suzuki, G. Gordon, Inorg. Chem., 1992, 31, 3534.CrossRefGoogle Scholar
  11. 11.
    L. C. Adam, G. Gordon, Inorg. Chem., 1999, 38, 1299.CrossRefGoogle Scholar
  12. 12.
    B. P. Nikol’skii, V. G. Krunchak, T. V. L’vova, V. V. Pal’chevskii, R. I. Sosnovskii, Dokl. Akad. Nauk, 1970, 191, 140 [Dokl. Chem. (Engl. Transl.), 1970].Google Scholar
  13. 13.
    B. P. Nikol’skii, V. G. Krunchak, V. V. Pal’chevskii, R. I. Sosnovskii, Dokl. Akad. Nauk, 1971, 197, 1324 [Dokl. Chem. (Engl. Transl.), 1971].Google Scholar
  14. 14.
    A. U. Khan, M. Kasha, Proc. Natl. Acad. Sci. USA, 1994, 91, 12362.CrossRefGoogle Scholar
  15. 15.
    J. A. Cella, J. A. Kelley, E. F. Kenehan, J. Org. Chem., 1975, 40, 1860.CrossRefGoogle Scholar
  16. 16.
    P. L. Anelli, C. Biffi, F. Montanari, S. Quici, J. Org. Chem., 1987, 52, 2559.CrossRefGoogle Scholar
  17. 17.
    T. Miyazawa, T. Endo, J. Org. Chem., 1985, 50, 3930.CrossRefGoogle Scholar
  18. 18.
    J. C. Morris, J. Phys. Chem., 1966, 70, 3798.CrossRefGoogle Scholar
  19. 19.
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.CrossRefGoogle Scholar
  20. 20.
    D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116.CrossRefGoogle Scholar
  21. 21.
    D. N. Laikov, Yu. A. Ustynyuk, Izv. Akad. Nauk, Ser. Khim., 2005, 804 [Russ. Chem. Bull., Int. Ed., 2005, 54, 820].Google Scholar
  22. 22.
    D. Sh. Sabirov, R. G. Bulgakov, Comput. Theor. Chem., 2011, 963, 185.CrossRefGoogle Scholar
  23. 23.
    A. F. Shestakov, Ross. Khim. Zh., 2007, 51, 121 [Mendeleev Chem. J. (Engl. Transl.), 2007, 51].Google Scholar
  24. 24.
    F. Emmenegger, G. Gordon, Inorg. Chem., 1967, 6, 633.CrossRefGoogle Scholar
  25. 25.
    H. Taube, H. Dodgen, J. Am. Chem. Soc., 1949, 71, 3330.CrossRefGoogle Scholar
  26. 26.
    G. V. Buxton, M. S. Sumhani, J. Chem. Soc., Faraday Trans., 1972, 68, 947.Google Scholar
  27. 27.
    G. Porter, F. J. Wright, Disc. Faraday Soc., 1953, 14, 23.CrossRefGoogle Scholar
  28. 28.
    R. A. Cox, R. G. Derwent, A. E. Eggleton, H. J. Reid, J. Chem. Soc., Faraday Trans., 1979, 75, 1648.Google Scholar
  29. 29.
    R. A. Durie, D. A. Ramsay, Canad. J. Phys., 1958, 36, 35.CrossRefGoogle Scholar
  30. 30.
    E. G. Rozantsev, V. D. Sholle, Synthesis, 1971, 401.Google Scholar
  31. 31.
    M. Dagonneau, E. S. Kagan, V. I. Mikhailov, E. G. Rozantsev, V. D. Sholle, Synthesis, 1984, 895.Google Scholar
  32. 32.
    T. Endo, T. Miyazawa, S. Shiihashi, M. Okawara, J. Am. Chem. Soc., 1984, 106, 3877.CrossRefGoogle Scholar
  33. 33.
    Z. B. Alfassi, R. E. Huie, S. Mosseri, P. Neta, Radiat. Phys. Chem., 1988, 43, 85.Google Scholar
  34. 34.
    G. V. Buxton, M. S. Sumhani, J. Chem. Soc., Faraday Trans., 1972, 68, 958.CrossRefGoogle Scholar
  35. 35.
    J. A. Epstein, M. Lewin, J. Polym. Sci., 1962, 58, 991.CrossRefGoogle Scholar
  36. 36.
    O. Iguerb, S. Demoustier-Champagne, J. Marchand-Brynaert, D. Daoust, M. Sclavons, J. Devaux, J. Appl. Polym. Sci., 2006, 100, 1184.CrossRefGoogle Scholar
  37. 37.
    G. V. Buxton, F. S. Dainton, F. Wilkinson, Chem. Commun., 1966, 320.Google Scholar
  38. 38.
    L. Wang, D. W. Margerum, Inorg. Chem., 2002, 41, 6099.CrossRefGoogle Scholar
  39. 39.
    V. Csordas, B. Bubnis, I. Fabian, G. Gordon, Inorg. Chem., 2001, 40, 1833.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • I. Yu. Ponedel’kina
    • 1
  • E. A. Khaibrakhmanova
    • 1
  • D. Sh. Sabirov
    • 1
  • V. N. Odinokov
    • 1
  1. 1.Institute of Petrochemistry and CatalysisRussian Academy of SciencesUfa, BashkortostanRussian Federation

Personalised recommendations