Advertisement

Russian Chemical Bulletin

, Volume 61, Issue 3, pp 665–667 | Cite as

Inclusion complexes naphthalene-γ-cyclodextrin-adamantane and naphthalene-γ-cyclodextrin-o-carborane: the structure and luminescence properties

  • V. B. Nazarov
  • V. G. Avakyan
  • T. G. Vershinnikova
  • M. V. Alfimov
  • V. Yu. Rudyak
Full Article

Abstract

The luminescence properties of inclusion complexes of naphthalene-d8 with γ-cyclodextrin (γ-CD) in the presence of adamantane or o-carborane added as third parties were studied in aqueous solutions. It was found that the structure of the cage compound added to the aqueous solution of the naphthalene-d8@γ-CD complex completely determines the luminescence type of the ternary complex. For instance, the intensity of excimer fluorescence (EF) band increases considerably at the expense of reduction of the intensity of monomer fluorescence (MF) band on adding adamantane. On the contrary, adding o-carborane causes a decrease in the intensity of the EF band of naphthalene-d8 and simultaneous appearance of MF in addition to long-lived room-temperature phosphorescence (RTP) whose lifetime increases from 1.5 s to 9.1 s after deoxygenation of the solution. Structural differences between the complexes affecting their behavior under the action of the third parties were explained using the results of semiempirical quantum chemical calculations.

Keywords

inclusion complexes naphthalene γ-cyclodextrin adamantane o-carborane excimer fluorescence room-temperature phosphorescence quantum chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. Nazarov, V. G. Avakyan, V. Y. Rudyak, M. V. Alfimov, T. G. Vershinnikova, J. Luminescence, 2011, 131, 1932.CrossRefGoogle Scholar
  2. 2.
    S. Hamai, Bull. Chem. Soc. Jpn, 1982, 55, 2721.CrossRefGoogle Scholar
  3. 3.
    V. B. Nazarov, V. G. Avakyan, M. V. Alfimov, T. G. Vershinnikova, Izv. Akad. Nauk, Ser. Khim., 2000, 1716 [Russ. Chem. Bull., Int. Ed., 2000, 49, 1699].Google Scholar
  4. 4. (a)
    V. B. Nazarov, V. G. Avakyan, M. V. Alfimov, T. G. Vershinnikova, Izv. Akad. Nauk, Ser. Khim., 2003, 869 [Russ. Chem. Bull., Int. Ed., 2003, 52, 916]Google Scholar
  5. 4. (b)
    V. B. Nazarov, V. G. Avakyan, E. I. Bagrii, T. G. Vershinnikova, M. V. Alfimov, Izv. Akad. Nauk, Ser. Khim., 2005, 2661 [Russ. Chem. Bull., Int. Ed., 2005, 54, 2752].Google Scholar
  6. 5. (a)
    V. B. Nazarov, V. G. Avakyan, T. G. Vershinnikova, V. Yu. Rudyak, M. V. Alfimov, Tez. dokl. XX Simp. “Sovremennaya khimicheskaya fizika” [Abstrs XXth Symp. “Modern Chemical Physics”] (Tuapse, September 15–26, 2008), Tuapse, p. 284 (in Russian)Google Scholar
  7. 5. (b)
    V. B. Nazarov, V. G. Avakyan, T. G. Vershinnikova, V. Yu. Rudyak, M. V. Alfimov, Tez. dokl. XXII Simp. “Sovremennaya khimicheskaya fizika” [Abstrs XXII Symp. “Modern Chemical Physics”] (Tuapse, September 24–October 4, 2010), Tuapse, p. 16 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.Photochemistry CenterRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations