Russian Chemical Bulletin

, Volume 60, Issue 12, pp 2457–2469 | Cite as

“Jumping” crystals: structures and properties of CuII complexes with N-methylimidazolyl- and N-methyltriazolyl-substituted nitronyl nitroxides

  • V. I. Ovcharenko
  • E. V. Tretyakov
  • S. V. Fokin
  • E. Yu. Fursova
  • O. V. Kuznetsova
  • S. E. Tolstikov
  • G. V. Romanenko
  • A. S. Bogomyakov
  • R. Z. Sagdeev
Full Articles


To find the factors favorable for the appearance of chemomechanical activity of heterospin crystals, a series of new heterospin complexes were synthesized and characterized. It includes [Cu(tfac)2LIm 2]·2CH2Cl2, [Cu(tfac)2LIm 2]·2EtOH, [[Cu(pfu)2]2LIm 3]·1/2CH2Cl2, [Cu(pfh)2LIm 2]·1/2CH2Cl2, [Cu(piv)2LIm 2]·2MeOH, [Co(piv)2LIm 2], [\( Cu(hfac)_2 L^{CD_3 } _2 \)], [Cu(hfac)2LTr]2·CH2Cl2, and [Cu(hfac)2LTr 2] (LIm, \( L^{CD_3 } \), and LTr are N-methylimidazolyl-, N-trideuteriomethylimidazolyl-, and N-methyltriazolyl-substituted nitronyl nitroxides, respectively; tfac, hfac, pfu, pfh, and piv are the charged coordinated diamagnetic ligands 1,1,5,5-tetrafluoropentane-2,4-dionate, 1,1,1,5,5,5-hexafluoropentane-2,4-dionate, 1,1,1,2,2,3,3,4,4,8,8,9,9,10,10,11,11,11-octadecafluoroundecane-5,7-dionate, 1,1,1,5,5,6,6,6-octafluorohexane-2,4-dionate, and 2,2-dimethylpropionate, respectively). The crystal and molecular structures of all compounds were determined. The results of the X-ray diffraction study of the complex [Ni(hfac)2LIm 2] synthesized earlier are reported. In the solid state of the complexes [Cu(pfh)2LIm 2] and [Co(piv)2LIm 2], the paramagnetic ligands are cis-coordinated to the central atom in a monodentate fashion via the donor N atom of the imidazole ring. In the dinuclear complexes [[Cu(pfu)2]2LIm 3] and [Cu(hfac)2LTr]2, the paramagnetic ligands are also in cis positions but act as bridges through coordination of the donor N atoms of the azole ring and the O atom of the nitronyl nitroxide moiety to different Cu2+ ions. In the solid complexes \( Cu(hfac)_2 L^{CD_3 } _2 \) , [Cu(hfac)2LTr 2], [Cu(tfac)2LIm 2]·2CH2Cl2, [Cu(tfac)2LIm 2]·2EtOH, and [Cu(piv)2LIm 2]·2MeOH, the nitronyl nitroxide radicals in the mononuclear heterospin molecules are in trans positions. The packing motif in the crystal structures of the complexes \( Cu(hfac)_2 L^{CD_3 } _2 \) , [Cu(tfac)2LIm 2]·2CH2Cl2, and [Cu(tfac)2LIm 2]·2EtOH is the same as that in the previously studied complexes [M(hfac)2LIm 2] exhibiting chemomechanical activity. Among the complexes under consideration, only crystals of \( Cu(hfac)_2 L^{CD_3 } _2 \) can exhibit chemomechanical activity, that is to make jumps upon heating or irradiation. The results of the present study suggest that the packing of the solid-state structure plays a key role in the generation of mechanical activity of the crystals.

Key words

copper(II) complexes cobalt(II) complexes nickel(II) complexes coordination compounds X-ray diffraction analysis structure-property relationships nitroxide radicals hexafluoroacetylacetonates pivalates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. B. Boocock, R. Darcy, E. F. Ullman, J. Am. Chem. Soc., 1968, 21, 5945.CrossRefGoogle Scholar
  2. 2.
    E. F. Ullman, J. H. Osiecki, D. G. B. Boocock, R. Darcy, J. Am. Chem. Soc., 1972, 94, 7049.CrossRefGoogle Scholar
  3. 3.
    US Pat. 3927019; Chem. Abstrs, 1976, 84, 180213.Google Scholar
  4. 4.
    V. I. Ovcharenko, in Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, Ed. R. Hicks, Wiley-VCH, New York, 2010, 461.CrossRefGoogle Scholar
  5. 5.
    E. V. Tretyakov, V. I. Ovcharenko, Usp. Khim., 2009, 78, 1051 [Russ. Chem. Rev. (Engl. Transl.), 2009, 78, 971].Google Scholar
  6. 6.
    A. Caneschi, D. Gatteschi, R. Sessoli, P. Rey, Acc. Chem. Res., 1989, 22, 392].CrossRefGoogle Scholar
  7. 7.
    V. I. Ovcharenko, R. Z. Sagdeev, Usp. Khim., 1999, 68, 381 [Russ. Chem. Rev. (Engl. Transl.), 1999, 68, 345].CrossRefGoogle Scholar
  8. 8.
    O. Kahn, Acc. Chem. Res., 2000, 33, 647.CrossRefGoogle Scholar
  9. 9.
    H. Iwamura, K. Inoue, T. Hayamizu, Pure Appl. Chem., 1996, 68, 243.CrossRefGoogle Scholar
  10. 10.
    D. Luneau, P. Rey, Coord. Chem. Rev., 2005, 249, 2591.CrossRefGoogle Scholar
  11. 11.
    K. E. Vostrikova, Coord. Chem. Rev., 2008, 252, 1409.CrossRefGoogle Scholar
  12. 12.
    D. Luneau, A. Borta, Y. Chumakov, J.-F. Jacquot, E. Jeanneau, C. Lescop, P. Rey, Inorg. Chim. Acta, 2008, 361, 3669.CrossRefGoogle Scholar
  13. 13.
    D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford University Press, Oxford, 2006, 395.CrossRefGoogle Scholar
  14. 14.
    H. Iwamura, K. Inoue, in Magnetism: Molecules to Materials II. Molecule-Based Materials, Eds J. S. Miller, M. Drillon, Wiley-VCH, Weinheim, 2001, 61.CrossRefGoogle Scholar
  15. 15.
    H. Oshio, T. Ito, Coord. Chem. Rev., 2000, 198, 329.CrossRefGoogle Scholar
  16. 16.
    L. Ouahab, Coord. Chem. Rev., 1998, 178–180, 1501.CrossRefGoogle Scholar
  17. 17.
    E. Yu. Fursova, V. I. Ovcharenko, Zh. Ross. Khim. Obshch. im. D. I. Mendeleeva, 2009, LIII, 23 [Mendeleev Chem. J. (Engl. Transl.), 2009, LIII].Google Scholar
  18. 18.
    O. Sato, J. Tao, Y.-Z. Zhang, Angew. Chem., Int. Ed., 2007, 46, 2152.CrossRefGoogle Scholar
  19. 19.
    V. I. Ovcharenko, S. V. Fokin, E. Yu. Fursova, O. V. Kuznetsova, E. V. Tretyakov, G. V. Romanenko, A. S. Bogomyakov, Inorg. Chem., 2011, 50, 4307.CrossRefGoogle Scholar
  20. 20.
    W. Sakami, D. W. Wilson, J. Biol. Chem., 1944, 154, 215.Google Scholar
  21. 21.
    Cambridge Structural Database System, Release 2010 (updated, May 2011).Google Scholar
  22. 22.
    V. Ovcharenko, E. Fursova, G. Romanenko, I. Eremenko, E. Tretyakov, V. Ikorskii, Inorg. Chem., 2006, 45, 5338.CrossRefGoogle Scholar
  23. 23.
    V. I. Ovcharenko, S. V. Fokin, G. V. Romanenko, I. V. Korobkov, P. Ray, Izv. Akad. Nauk, Ser. Khim., 1999, 1539 [Russ. Chem. Bull. (Engl. Transl.), 1999, 48, 1519].Google Scholar
  24. 24.
    US Pat. 6255305 B1; Chem. Abstrs, 1998, 184, 167433.Google Scholar
  25. 25.
    Int. Appl. WO 135826 A2; Chem. Abstrs, 2008, 149, 556635.Google Scholar
  26. 26.
    J. A. Bertrand, R. I. Kaplan, Inorg. Chem., 1966, 5, 489.CrossRefGoogle Scholar
  27. 27.
    V. I. Ovcharenko, K. E. Vostrikova, A. V. Podoplelov, R. Z. Sagdeev, G. V. Romanenko, V. N. Ikorskii, Polyhedron, 1994, 13, 2781.CrossRefGoogle Scholar
  28. 28.
    T. O. Denisova, E. V. Amelćhenkova, I. V. Pruss, Zh. V. Dobrokhotova, O. P. Fialkovskii, S. E. Nefedov, Zh. Neorg. Khim., 2006, 51, 1098 [Russ. J. Inorg. Chem. (Engl. Transl.), 2006, 51].Google Scholar
  29. 29.
    G. Aromi, A. C. Batsanov, P. Christian, M. Helliwell, A. Parkin, S. Parsons, A. A. Smith, G. A. Timco, R. E. P. Winpenny, Chem. Eur. J., 2003, 9, 5142.CrossRefGoogle Scholar
  30. 30.
    L. Carlin, Magnetochemistry, Springer-Verlag, Berlin, 1986.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2011

Authors and Affiliations

  • V. I. Ovcharenko
    • 1
  • E. V. Tretyakov
    • 1
  • S. V. Fokin
    • 1
  • E. Yu. Fursova
    • 1
  • O. V. Kuznetsova
    • 1
  • S. E. Tolstikov
    • 1
  • G. V. Romanenko
    • 1
  • A. S. Bogomyakov
    • 1
  • R. Z. Sagdeev
    • 1
  1. 1.International Tomography CenterSiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations