Advertisement

Russian Chemical Bulletin

, Volume 60, Issue 8, pp 1657–1662 | Cite as

Effect of different types of radiation on the composition of poly(phosphazene) surface

  • A. V. Naumkin
  • I. O. Volkov
  • A. A. Lapchenko
  • A. S. Lapchenko
  • D. R. Tur
Full Articles
  • 51 Downloads

Abstract

Changes in the composition of poly[bis(trifluoroethoxy)phosphazene] surface irradiated at λ = 6700 Å (a laser), at λ = 9.89 Å (1253.6 eV, X-ray Mg-Kα radiation), and at 4720 Å (a light emitting diode, (LED) for medical applications) were studied in situ by X-ray photoelectron spectroscopy. Both quantitative and qualitative changes in the surface composition compared to routine measurements of the polymer spectra are observed during an analysis of the surface upon long-term X-ray irradiation or with an increase in the X-ray radiation source power. These are the changes in the concentrations of elements and the appearance of additional states of carbon, oxygen, and nitrogen atoms. The composition of the surface irradiated with the laser and LED remains unchanged.

Key words

poly(phosphazene) X-ray photoelectron spectroscopy X-ray radiation polymer degradation surface composition activation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ishikawa, K. Yukimura, K. Matsunaga, T. Maruyama, Surface Coatings Technology, 2000, 130, 52.CrossRefGoogle Scholar
  2. 2.
    S. C. J. Loo, C. P. Ooi, Y. C. F Boey, Biomaterials, 2005, 26, 3809.CrossRefGoogle Scholar
  3. 3.
    K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, S. H. Teoh, Biomaterials, 2005, 26, 763.CrossRefGoogle Scholar
  4. 4.
    H. Kaczmarek, H. Chaberska, Appl. Surf. Sci., 2006, 252, 8185.CrossRefGoogle Scholar
  5. 5.
    H. Shen, X. Hu, F. Yang, J. Bei, S. Wang, Biomaterials, 2007, 28, 4219.CrossRefGoogle Scholar
  6. 6.
    X. Gu, C. A. Michaels, D. Nguyen, Y. C. Jean, J. W. Martin, T. Nguyen, Appl. Surf. Sci., 2006, 252, 5168.CrossRefGoogle Scholar
  7. 7.
    S. Sartori, A. Rechichi, G. Vozzi, M. D’Acunto, E. Heine, P. Giusti, G. Ciardelli, React. Funct. Polymers, 2008, 68, 809.CrossRefGoogle Scholar
  8. 8.
    M. C. Buncick, D. E. Thomas, K. S. McKinny, M. S. Jahan, Appl. Surf. Sci., 2000, 156, 97.CrossRefGoogle Scholar
  9. 9.
    T. Coffey, S. G. Urquhart, H. Ade, J. Electron Spectrosc. Relat. Phenom., 2002, 122, 65.CrossRefGoogle Scholar
  10. 10.
    W. Wong, K. Chan, K. W. Yeung, K. S. Lau, Mat. Res. Innovat., 2001, 4, 344.CrossRefGoogle Scholar
  11. 11.
    H. Wang, Y.-E. Fang, Y. Yan, J. Mater. Chem., 2001, 11, 1374.CrossRefGoogle Scholar
  12. 12.
    B. D. Ratner, Biosensors Bioelectronics, 1995, 10, 797.CrossRefGoogle Scholar
  13. 13.
    M. D. Duca, C. L. Plosceanu, T. Pop, J. Appl. Polym. Sci., 1998, 67, 2125.CrossRefGoogle Scholar
  14. 14.
    W. Zhang, P. K. Chu, J. Ji, Y. Zhang, X. Liu, R. K. Y. Fu, P. C. T. Ha, Q. Yan, Biomaterials, 2006, 27, 44.CrossRefGoogle Scholar
  15. 15.
    H. R. Allcock, L. B. Steely, J. H. Kim, B.-K. Kang, Langmuir, 2007, 23, 8103.CrossRefGoogle Scholar
  16. 16.
    J. P. O’Brien, W. T. Ferrar, H. R. Allcock, Macromolecules, 1979, 12, 108.CrossRefGoogle Scholar
  17. 17.
    H. Hiraoka, W. Lee, L. W. Welsh, R. W. Allen, Jr., Macromolecules, 1979, 12, 753.CrossRefGoogle Scholar
  18. 18.
    S. V. Vinogradova, D. R. Tur, V. A. Vasnev, Usp. Khim., 1998, 67, 573 [Russ. Chem. Rev. (Engl. Transl.), 1998, 67, 515].Google Scholar
  19. 19.
    A. Welle, M. Grunze, D. R. Tur, J. Colloid Interface Sci., 1998, 197, 263.CrossRefGoogle Scholar
  20. 20.
    A. S. Lapchenko, A. A. Mironov, A. G. Kucherov, A. A. Lapchenko, O. V. Mal’chenko, S. K. Dvorikov, D. R. Tur, Vestnik Otorinolaringologii [Otolaryngologic Bulletin], 2007, No. 5, 83 (in Russian).Google Scholar
  21. 21.
    A. S. Lapchenko, A. G. Kucherov, A. A. Lapchenko, O. V. Mal’chenko, D. R. Tur, Vestnik Otorinolaringologii [Otolaryngologic Bulletin], 2007, No. 5, 162 (in Russian).Google Scholar
  22. 22.
    A. c. [Author’s Certificate] 1 024 482 USSR, Byul. Izobr. [Invention Bulletin], 1983, No. 23, 83 (in Russian).Google Scholar
  23. 23.
    A. V. Naumkin, I. O. Volkov, D. R. Tur, A. I. Pertsin, Vysokomol. Soedin., Ser. B, 2002, 44, 877 [Polym. Sci., Ser. B, 2002, 44, 139].Google Scholar
  24. 24.
    C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell, J. R. Rumble, Jr., NIST X-ray Photoelectron Spectroscopy Database, Version 3.5 (National Institute of Standards and Technology, Gaithersburg, 2003); http://srdatanist.gov/xps.Google Scholar
  25. 25.
    G. Beamson, D. Briggs, High Resolution XPS of Organic Polymers, The Scienta ESCA300 Database, Chichester, Wiley, 1992.Google Scholar
  26. 26.
    R. Milani, M. Gleria, S. Gross, R. De Jaeger, A. Mazzah, L. Gengembre, M. Frere, C. Jama, J. Inorg. Organomet. Polym., 2008, 18, 344.CrossRefGoogle Scholar
  27. 27.
    R. Milani, M. Gleria, A. Sassi, R. De Jaeger, A. Mazzah, L. Gengembre, M. Frere, C. Jama, Chem. Mater., 2007, 19, 4975.CrossRefGoogle Scholar
  28. 28.
    L. Pemberton, R. De Jaeger, L. Gengembre, Polymer, 1998, 39, 1299.CrossRefGoogle Scholar
  29. 29.
    H. R. Allcock, E. J. Walsh, J. Am. Chem. Soc., 1972, 94, 4538.CrossRefGoogle Scholar
  30. 30.
    V. S. Papkov, M. N. Il’ina, D. R. Tur, G. L. Slonimskii, Vysokomol. Soedin., Ser. A, 1989, 44, 2294 [Polym. Sci. USSR, Ser. A (Engl. Transl.), 1989, 44].Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. V. Naumkin
    • 1
  • I. O. Volkov
    • 1
  • A. A. Lapchenko
    • 2
  • A. S. Lapchenko
    • 2
  • D. R. Tur
    • 1
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Federal Agency on Health Protection and Social DevelopmentRussian State Medical UniversityMoscowRussian Federation

Personalised recommendations