Advertisement

Russian Chemical Bulletin

, Volume 60, Issue 6, pp 1196–1202 | Cite as

Dye J-aggregate—semiconductor nanocrystal hybrid nanostructures in reverse micelles: an experimental study

  • L. M. Nikolenko
  • S. B. Brichkin
  • V. F. Razumov
Full Articles
  • 69 Downloads

Abstract

Reverse micelle solutions can be used for the assembly of hybrid nanostructures of the composition dye monomer—Ag2S nanocrystal, dye J-aggregate—CuI nanocrystal, and dye J-aggregate—PbI2 nanocrystal. The assembly is effected by means of adsorption of the dye (3,3′-di-(γ-sulfopropyl)-4,5,4′,5′-dibenzo-9-ethylthiacarbocyanine betaine pyridinium salt) onto the nanocrystal surface. Factors responsible for the dye adsorption onto semiconductor nanocrystals in reverse micelle solutions are analyzed. It is suggested that adsorption can be the outcome of forces induced by both van der Waals and chemical interactions. The surfactants used for stabilization of reverse micelle solutions also influence the assembly of the hybrid nanostructures.

Key words

cyanine dyes J-aggregates semiconductor nanocrystals hybrid nanostructures reverse micelles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Grätzel, J. Photochem. Photobiol., C, 2003, 4, 145.CrossRefGoogle Scholar
  2. 2.
    S. Ushiroda, N. Ruzycki, Y. Lu, M. T. Spitler, B. A. Parkinson, J. Am. Chem. Soc., 2005, 127, 5158.CrossRefGoogle Scholar
  3. 3.
    A. Ehret, L. Stuhl, M. T. Spitler, J. Phys. Chem. B, 2001, 105, 9960.CrossRefGoogle Scholar
  4. 4.
    K. Sayama, S. Tsukagoshi, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, H. Arakawa, J. Phys. Chem. B, 2002, 106, 1363.CrossRefGoogle Scholar
  5. 5.
    R. Huber, S. Spörlein, J. E. Moser, M. Grätzel, J. Wachtveitl, J. Phys. Chem. B, 2000, 104, 8995.CrossRefGoogle Scholar
  6. 6.
    R. Huber, J. E. Moser, M. Grätzel, J. Wachtveitl, J. Phys. Chem. B, 2002, 106, 6494.CrossRefGoogle Scholar
  7. 7.
    C. Ingrosso, A. Petrella, P. Cosma, M. L. Curri, M. Striccoli, A. Agostiano, J. Phys. Chem. B, 2006, 110, 24424.CrossRefGoogle Scholar
  8. 8.
    R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B, 2004, 108, 4818.CrossRefGoogle Scholar
  9. 9.
    P. K. Sudeep, K. Takechi, P. V. Kamat, J. Phys. Chem. C, 2007, 111, 488.CrossRefGoogle Scholar
  10. 10.
    B. Zhang, J. Mu, D. Wang, J. Dispersion Sci. Technol., 2005, 26, 371.CrossRefGoogle Scholar
  11. 11.
    O. Schmelz, A. Mews, T. Basche, A. Herrmann, K. Müllen, Langmuir, 2001, 17, 2861.CrossRefGoogle Scholar
  12. 12.
    E. Zenkevich, F. Cichos, A. Shulga, E. P. Petrov, T. Blaudeck, C. von Borczyskowski, J. Phys. Chem. B, 2005, 109, 8679.CrossRefGoogle Scholar
  13. 13.
    C. Nasr, D. Liu, S. Hotchandani, P. V. Kamat, J. Phys. Chem., 1996, 100, 11054.CrossRefGoogle Scholar
  14. 14.
    C. Nasr, S. Hotchandani, Chem. Mater., 2000, 12, 1529.CrossRefGoogle Scholar
  15. 15.
    S. Barazzouk, H. Lee, S. Hotchandani, P. V. Kamat, J. Phys. Chem. B, 2000, 104, 3616.CrossRefGoogle Scholar
  16. 16.
    V. Chikan, M. R. Waterland, J. M. Huang, D. F. Kelley, J. Chem. Phys., 2000, 113, 5448.CrossRefGoogle Scholar
  17. 17.
    Q. Zhang, T. Atay, J. R. Tischler, M. S. Bradley, V. Bulovic, A. V. Nurmikko, Nat. Nanotechnol., 2007, 2, 555.CrossRefGoogle Scholar
  18. 18.
    L. M. Nikolenko, S. B. Brichkin, T. M. Nikolaeva, V. F. Razumov, Ross. nanotekhnologii, 2009, 4, 24 [Nanotechnologies in Russia (Engl. Transl.), 2009, 4, 19].Google Scholar
  19. 19.
    J. Eastoe, M. J. Hollamby, L. Hudson, Adv. Colloid Interface Sci., 2006, 128130, 5.CrossRefGoogle Scholar
  20. 20.
    S. B. Brichkin, V. F. Razumov, M. G. Spirin, M. V. Alfimov, Dokl. Akad. Nauk, 1998, 358, 198 [Dokl. Chem. (Engl. Transl.), 1998, 358].Google Scholar
  21. 21.
    P. D. I. Fletcher, A. M. Howe, B. H. Robinson, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 985.CrossRefGoogle Scholar
  22. 22.
    M. Dvolaitzky, M. Guyot, M. Lagues, J. P. Le Pesant, R. Ober, C. Sauterey, C. Taupin, J. Chem. Phys., 1978, 69, 3279.CrossRefGoogle Scholar
  23. 23.
    A. M. Cazabat, D. Langevin, J. Chem. Phys., 1981, 74, 3148.CrossRefGoogle Scholar
  24. 24.
    S. Biswas, S. C. Bhattacharya, S. P. Moulik, J. Dispersion Sci. Technol., 2004, 25, 801.CrossRefGoogle Scholar
  25. 25.
    M. Cardona, Phys. Rev., 1963, 129, 69.CrossRefGoogle Scholar
  26. 26.
    Yu. V. Bokshits, Yu. A. Fedutik, G. P. Shevchenko, Kolloid. Zh., 2004, 66, 30 [Colloid. J. (Engl. Transl.), 2004, 66, 25].Google Scholar
  27. 27.
    O. Gogolin, G. Mshvelidze, E. Tsitsishvili, M. Schmidt, A. Hepting, C. Klingshirn, A. Kamilli, W. Send, D. Gerthsen, Phys. Rev. B: Condens. Matter, 2000, 62, 13053.CrossRefGoogle Scholar
  28. 28.
    G. K. Kasi, N. R. Dollahon, T. S. Ahmadi, J. Phys. D: Appl. Phys., 2007, 40, 1778.CrossRefGoogle Scholar
  29. 29.
    I. Kh. Akopyan, V. A. Gaisin, D. K. Loginov, B. V. Novikov, A. Tsagan-Manzhiev, M. I. Vasil’eva, V. V. Golubev, Fizika Tverdogo Tela, 2005, 47, 1316 [Phys. Solid State (Engl. Transl.), 2005, 47, 1372].Google Scholar
  30. 30.
    A. Tanji, I. Akai, K. Kojima, T. Karasava, T. Komatsu, J. Lumin., 2000, 8789, 516.CrossRefGoogle Scholar
  31. 31.
    R. M. Penner, Acc. Chem. Res., 2003, 33, 78.CrossRefGoogle Scholar
  32. 32.
    A. D’Aprano, F. Pinio, V. Turco Liveri, J. Sol. Chem., 1991, 20, 301.CrossRefGoogle Scholar
  33. 33.
    M. P. Pileni, L. Motte, F. Billoudet, J. Mahrt, F. Willing, Mater. Lett., 1997, 31, 255.CrossRefGoogle Scholar
  34. 34.
    L. Motte, F. Billoudet, M. P. Pileni, J. Phys. Chem., 1995, 99, 16425.CrossRefGoogle Scholar
  35. 35.
    L. Jeunieau, V. Alin, J. B. Nagy, Langmuir, 2000, 16, 597.CrossRefGoogle Scholar
  36. 36.
    S. B. Brichkin, M. A. Osipova, T. M. Nikolaeva, V. F. Razumov, Khim. Vysokikh Energii, 2005, 39, 442 [High Energy Chem. (Engl. Transl.), 2005, 39, 15].Google Scholar
  37. 37.
    A. F. Guzenko, A. L. Yudin, N. A. Yatsyna, L. V. Kolesnikov, Khim. Vysokikh Energii, 2005, 39, 367 [High Energy Chem. (Engl. Transl.), 2005, 39, 318].Google Scholar
  38. 38.
    T. N. James, The Theory of the Photographic Process, Macmillan Publ., New York, 1977.Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • L. M. Nikolenko
    • 1
  • S. B. Brichkin
    • 1
  • V. F. Razumov
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations