Skip to main content
Log in

Dye J-aggregate—semiconductor nanocrystal hybrid nanostructures in reverse micelles: an experimental study

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Reverse micelle solutions can be used for the assembly of hybrid nanostructures of the composition dye monomer—Ag2S nanocrystal, dye J-aggregate—CuI nanocrystal, and dye J-aggregate—PbI2 nanocrystal. The assembly is effected by means of adsorption of the dye (3,3′-di-(γ-sulfopropyl)-4,5,4′,5′-dibenzo-9-ethylthiacarbocyanine betaine pyridinium salt) onto the nanocrystal surface. Factors responsible for the dye adsorption onto semiconductor nanocrystals in reverse micelle solutions are analyzed. It is suggested that adsorption can be the outcome of forces induced by both van der Waals and chemical interactions. The surfactants used for stabilization of reverse micelle solutions also influence the assembly of the hybrid nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Grätzel, J. Photochem. Photobiol., C, 2003, 4, 145.

    Article  Google Scholar 

  2. S. Ushiroda, N. Ruzycki, Y. Lu, M. T. Spitler, B. A. Parkinson, J. Am. Chem. Soc., 2005, 127, 5158.

    Article  CAS  Google Scholar 

  3. A. Ehret, L. Stuhl, M. T. Spitler, J. Phys. Chem. B, 2001, 105, 9960.

    Article  CAS  Google Scholar 

  4. K. Sayama, S. Tsukagoshi, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, H. Arakawa, J. Phys. Chem. B, 2002, 106, 1363.

    Article  CAS  Google Scholar 

  5. R. Huber, S. Spörlein, J. E. Moser, M. Grätzel, J. Wachtveitl, J. Phys. Chem. B, 2000, 104, 8995.

    Article  CAS  Google Scholar 

  6. R. Huber, J. E. Moser, M. Grätzel, J. Wachtveitl, J. Phys. Chem. B, 2002, 106, 6494.

    Article  CAS  Google Scholar 

  7. C. Ingrosso, A. Petrella, P. Cosma, M. L. Curri, M. Striccoli, A. Agostiano, J. Phys. Chem. B, 2006, 110, 24424.

    Article  CAS  Google Scholar 

  8. R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B, 2004, 108, 4818.

    Article  CAS  Google Scholar 

  9. P. K. Sudeep, K. Takechi, P. V. Kamat, J. Phys. Chem. C, 2007, 111, 488.

    Article  CAS  Google Scholar 

  10. B. Zhang, J. Mu, D. Wang, J. Dispersion Sci. Technol., 2005, 26, 371.

    Article  CAS  Google Scholar 

  11. O. Schmelz, A. Mews, T. Basche, A. Herrmann, K. Müllen, Langmuir, 2001, 17, 2861.

    Article  CAS  Google Scholar 

  12. E. Zenkevich, F. Cichos, A. Shulga, E. P. Petrov, T. Blaudeck, C. von Borczyskowski, J. Phys. Chem. B, 2005, 109, 8679.

    Article  CAS  Google Scholar 

  13. C. Nasr, D. Liu, S. Hotchandani, P. V. Kamat, J. Phys. Chem., 1996, 100, 11054.

    Article  CAS  Google Scholar 

  14. C. Nasr, S. Hotchandani, Chem. Mater., 2000, 12, 1529.

    Article  CAS  Google Scholar 

  15. S. Barazzouk, H. Lee, S. Hotchandani, P. V. Kamat, J. Phys. Chem. B, 2000, 104, 3616.

    Article  CAS  Google Scholar 

  16. V. Chikan, M. R. Waterland, J. M. Huang, D. F. Kelley, J. Chem. Phys., 2000, 113, 5448.

    Article  CAS  Google Scholar 

  17. Q. Zhang, T. Atay, J. R. Tischler, M. S. Bradley, V. Bulovic, A. V. Nurmikko, Nat. Nanotechnol., 2007, 2, 555.

    Article  CAS  Google Scholar 

  18. L. M. Nikolenko, S. B. Brichkin, T. M. Nikolaeva, V. F. Razumov, Ross. nanotekhnologii, 2009, 4, 24 [Nanotechnologies in Russia (Engl. Transl.), 2009, 4, 19].

    Google Scholar 

  19. J. Eastoe, M. J. Hollamby, L. Hudson, Adv. Colloid Interface Sci., 2006, 128130, 5.

    Article  Google Scholar 

  20. S. B. Brichkin, V. F. Razumov, M. G. Spirin, M. V. Alfimov, Dokl. Akad. Nauk, 1998, 358, 198 [Dokl. Chem. (Engl. Transl.), 1998, 358].

    CAS  Google Scholar 

  21. P. D. I. Fletcher, A. M. Howe, B. H. Robinson, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 985.

    Article  CAS  Google Scholar 

  22. M. Dvolaitzky, M. Guyot, M. Lagues, J. P. Le Pesant, R. Ober, C. Sauterey, C. Taupin, J. Chem. Phys., 1978, 69, 3279.

    Article  CAS  Google Scholar 

  23. A. M. Cazabat, D. Langevin, J. Chem. Phys., 1981, 74, 3148.

    Article  CAS  Google Scholar 

  24. S. Biswas, S. C. Bhattacharya, S. P. Moulik, J. Dispersion Sci. Technol., 2004, 25, 801.

    Article  CAS  Google Scholar 

  25. M. Cardona, Phys. Rev., 1963, 129, 69.

    Article  Google Scholar 

  26. Yu. V. Bokshits, Yu. A. Fedutik, G. P. Shevchenko, Kolloid. Zh., 2004, 66, 30 [Colloid. J. (Engl. Transl.), 2004, 66, 25].

    Google Scholar 

  27. O. Gogolin, G. Mshvelidze, E. Tsitsishvili, M. Schmidt, A. Hepting, C. Klingshirn, A. Kamilli, W. Send, D. Gerthsen, Phys. Rev. B: Condens. Matter, 2000, 62, 13053.

    Article  CAS  Google Scholar 

  28. G. K. Kasi, N. R. Dollahon, T. S. Ahmadi, J. Phys. D: Appl. Phys., 2007, 40, 1778.

    Article  CAS  Google Scholar 

  29. I. Kh. Akopyan, V. A. Gaisin, D. K. Loginov, B. V. Novikov, A. Tsagan-Manzhiev, M. I. Vasil’eva, V. V. Golubev, Fizika Tverdogo Tela, 2005, 47, 1316 [Phys. Solid State (Engl. Transl.), 2005, 47, 1372].

    Google Scholar 

  30. A. Tanji, I. Akai, K. Kojima, T. Karasava, T. Komatsu, J. Lumin., 2000, 8789, 516.

    Article  Google Scholar 

  31. R. M. Penner, Acc. Chem. Res., 2003, 33, 78.

    Article  Google Scholar 

  32. A. D’Aprano, F. Pinio, V. Turco Liveri, J. Sol. Chem., 1991, 20, 301.

    Article  Google Scholar 

  33. M. P. Pileni, L. Motte, F. Billoudet, J. Mahrt, F. Willing, Mater. Lett., 1997, 31, 255.

    Article  CAS  Google Scholar 

  34. L. Motte, F. Billoudet, M. P. Pileni, J. Phys. Chem., 1995, 99, 16425.

    Article  CAS  Google Scholar 

  35. L. Jeunieau, V. Alin, J. B. Nagy, Langmuir, 2000, 16, 597.

    Article  CAS  Google Scholar 

  36. S. B. Brichkin, M. A. Osipova, T. M. Nikolaeva, V. F. Razumov, Khim. Vysokikh Energii, 2005, 39, 442 [High Energy Chem. (Engl. Transl.), 2005, 39, 15].

    Google Scholar 

  37. A. F. Guzenko, A. L. Yudin, N. A. Yatsyna, L. V. Kolesnikov, Khim. Vysokikh Energii, 2005, 39, 367 [High Energy Chem. (Engl. Transl.), 2005, 39, 318].

    Google Scholar 

  38. T. N. James, The Theory of the Photographic Process, Macmillan Publ., New York, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Nikolenko.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1170–1176, June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolenko, L.M., Brichkin, S.B. & Razumov, V.F. Dye J-aggregate—semiconductor nanocrystal hybrid nanostructures in reverse micelles: an experimental study. Russ Chem Bull 60, 1196–1202 (2011). https://doi.org/10.1007/s11172-011-0188-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-011-0188-6

Key words

Navigation