Advertisement

Russian Chemical Bulletin

, Volume 60, Issue 6, pp 1150–1157 | Cite as

Parametric domain of the stationary filtration combustion wave in the charge with a low carbon content

  • I. I. Amelin
  • E. A. Salgansky
  • N. N. Volkova
  • A. F. Zholudev
  • A. P. Alekseev
  • E. V. Polianczyk
  • G. B. Manelis
Full Articles

Abstract

The dependences of the temperature and the rate of filtration combustion (FC) of carbon on the main parameters controlling the process were experimentally and theoretically studied. Among these are the fraction of the combustible in the charge, the flow rate of the oxidant, the reactivity of the carbon material, and the level of heat loss via the reactor walls. The transition from the conditions of stationary propagation of the combustion wave to decay occurs critically, upon a minor change in the controlling parameters. The parametric domain of the stationary wave was determined. A simplified unidimensional one-temperature mathematical model was proposed for the description of stationary regimes of FC of solid fuels. The model qualitatively characterizes the dependence of the combustion regime on the main controlling parameters and makes it possible to reveal the critical conditions for the existence of stationary combustion regimes.

Key words

combustion macrokinetics carbon oxidation kinetics filtration charge heat loss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Aldushin, A. G. Merzhanov, in Rasprostranenie teplovykh voln v geterogennykh sredakh [Propagation of Thermal Waves in Heterogeneous Media], Ed. Yu. Sh. Matros, Nauka, Novosibirsk, 1988, p. 9 (in Russian).Google Scholar
  2. 2.
    D. A. Schult, B. J. Matkowsky, V. A. Volpert, A. C. Fernandez-Pello, Combustion and Flame, 1996, 104, 1.CrossRefGoogle Scholar
  3. 3.
    E. A. Salgansky, V. M. Kislov, S. V. Glazov, A. F. Zholudev, G. B. Manelis, Fiz. Goren. Vzryva, 2008, 44, 30 [Combust., Explos., Shock Waves (Engl. Transl.), 2008, 44, 273].Google Scholar
  4. 4.
    I. Y. Akkutlu, Y. C. Yortsos, Combustion and Flame, 2003, 134, 229.CrossRefGoogle Scholar
  5. 5.
    I. I. Amelin, N. N. Volkova, A. A. Zhirnov, A. P. Alekseev, E. V. Polianczyk, G. B. Manelis, Dokl. Akad. Nauk, 2008, 421, 65 [Dokl. Phys. Chem. (Engl. Transl.), 2008, 421, 159].Google Scholar
  6. 6.
    I. I. Amelin, N. N. Volkova, A. A. Zhirnov, A. P. Alekseev, A. F. Zholudev, E. V. Polianczyk, G. B. Manelis, Khim. Fiz., 2010, 29, 76 [Russ. J. Phys. Chem. B (Engl. Transl.), 2010, 4, 265].Google Scholar
  7. 7.
    A. C. Fialkov, Uglerod, mezhsloevye soedineniya i kompozity na ego osnove [Carbon and Carbon-Based Interlayer Compounds and Composites], Aspekt Press, Moscow, 1997, 718 pp. (in Russian).Google Scholar
  8. 8.
    Ia. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, Mathematical Theory of Combustion and Explosions, Publisher Consultants Bureau, New York, 1985, 618 pp.CrossRefGoogle Scholar
  9. 9.
    N. N. Volkova, E. A. Salgansky, A. A. Zhirnov, G. B. Manelis, Khim. Fiz. [Chemical Physics], 2007, 26, 53 (in Russian).Google Scholar
  10. 10.
    A. P. Aldushin, V. D. Lugovoi, A. G. Merzhanov, B. I. Khaikin, Dokl. Akad. Nauk SSSR, 1978, 243, 1434 [Sov. Phys. Dokl. (Engl. Transl.), 1978, 243, 914].Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • I. I. Amelin
    • 1
  • E. A. Salgansky
    • 2
  • N. N. Volkova
    • 2
  • A. F. Zholudev
    • 2
  • A. P. Alekseev
    • 2
  • E. V. Polianczyk
    • 2
  • G. B. Manelis
    • 2
  1. 1.Institute of Computational Mathematics and Mathematical GeophysicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations