Advertisement

Russian Chemical Bulletin

, Volume 60, Issue 6, pp 1071–1077 | Cite as

The role of the medium in electrochemical functionalization and dispersion of carbon nanotubes

  • A. G. Krivenko
  • N. S. Komarova
  • A. G. Ryabenko
  • A. V. Naumkin
  • E. V. Stenina
  • L. N. Sviridova
  • S. N. Sul’yanov
Full Articles
  • 72 Downloads

Abstract

An electrochemical method for dispersion of single-walled carbon nanotubes (SWNTs) is described. The technique is based on grafting of oxygen-containing functional groups to the nanotube surface during electrolysis in aqueous and nonaqueous potassium bromide solutions. A dependence of the degree of functionalization of nanotubes on the solvent was revealed experimentally. Nanotubes treated in DMSO have about 14 carbon atoms per oxygen atom from functional groups (cf. nearly four C atoms per oxygen atom in the nanotubes treated in aqueous solutions). The corresponding maximum specific capacities of the electrodes are nearly 10 and 60 F g−1. The samples treated in solutions of KBr in DMSO have about 300 carbon atoms per bromine atom on the nanotube surface (cf. only 30 carbon atoms in the samples treated in aqueous solution). A mechanism of electrochemical modification of SWNTs is proposed. Its key step is production of atomic oxygen that oxidizes the nanotube surface with the formation of functional groups.

Key words

single-walled carbon nanotubes dispersion functionalization electrolysis dimethylsulfoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. S. Banerjee, T. Hemraj-Benny, Adv. Mater., 2005, 17, 17.CrossRefGoogle Scholar
  2. 2.
    E. R. Badamshina, M. P. Gafurova, Ya. I. Estrin, Usp. Khim., 2010, 79, 1027 [Russ. Chem. Rev. (Engl.Trans.), 2010, 79, 945].Google Scholar
  3. 3.
    M. Moniruzzaman, K. I. Winey, Macromolecules, 2006, 39, 5194.CrossRefGoogle Scholar
  4. 4.
    P. M. Ajayan, J. M. Tour, Nature (London), 2007, 447, 1066.CrossRefGoogle Scholar
  5. 5.
    V. G. Udovitsky, Fiz. Inzh. Poverkhn., 2009, 7, 351 [Physical Surface Engineering (Engl. Transl.), 2009, 7, No. 4].Google Scholar
  6. 6.
    L. Vaisman, H. D. Wagner, G. Marom, Adv. Colloid Interface Sci., 2006, 128–130, 37.CrossRefGoogle Scholar
  7. 7.
    O. Tanaike, O. Kimizuka, N. Yoshizawa, K. Yamada, X. Wang, H. Hatori, M. Toyoda, Electrochem. Commun., 2009, 4, 1441.CrossRefGoogle Scholar
  8. 8.
    P. M. Rafailov, C. Thomsen, U. Dettlaff-Weglikowska, S. Roth, J. Phys. Chem. B, 2008, 11, 25368.Google Scholar
  9. 9.
    C. Nieto-Draghi, J. B. Avalosa, J. Chem. Phys., 2003, 119, 4782.CrossRefGoogle Scholar
  10. 10.
    V. V. Chaban, O. N. Kalugin, J. Mol. Liq., 2010, 151, 113.CrossRefGoogle Scholar
  11. 11.
    S. Banerjee, S. S. Wong, J. Am. Chem. Soc., 2002, 124, 8940.CrossRefGoogle Scholar
  12. 12.
    M. Pavese, S. Musso, S. Bianco, M. Giorcelli, N. Pugno, J. Phys. Condens. Matter, 2008, 20, 474206.CrossRefGoogle Scholar
  13. 13.
    A. V. Krestinin, A. P. Haritonov, Yu. M. Shulga, O. M. Zhigalina, E. I. Knerelman, M. Dubois, M. M. Brzhezinskaya, A. S. Vinogradov, A. B. Preobrazhencky, G. I. Zvereva, M. B. Kislov, V. M. Martynenko, I. I. Korobov, G. I. Davydova, V. G. Zhigalina, N. A. Kiselev, Ros. nano-tekhnologii, 2009, 4, 67 [Nanotechnologies in Russia (Engl. Transl.), 2009, 4, 60].Google Scholar
  14. 14.
    A. G. Krivenko, V. I. Matyushenko, E. V. Stenina, L. N. Sviridova, A. V. Krestinin, G. I. Zvereva, V. A. Kurmaz, A. G. Ryabenko, S. N. Dmitriev, V. A. Skuratov, Electrochem. Commun., 2005, 7, 199.CrossRefGoogle Scholar
  15. 15.
    K. Mizur, S. Imafuji, T. Ochi, J. Phys. Chem. B, 2000, 104, 11001.CrossRefGoogle Scholar
  16. 16.
    M. C. R. Symons, G. Eaton, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 1963.CrossRefGoogle Scholar
  17. 17.
    Yu. A. Kukk, Zh. Klavil’ye, Elektrokhimiya, 1977, 13, 841 [Sov. Electrochemistry (Engl.Trans.), 1977, 13, 712].Google Scholar
  18. 18.
    A. P. Dementjeva, K. I. Maslakova, A. V. Naumkin, Appl. Surf. Sci., 2005, 245, 128.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. G. Krivenko
    • 1
  • N. S. Komarova
    • 1
  • A. G. Ryabenko
    • 1
  • A. V. Naumkin
    • 2
  • E. V. Stenina
    • 3
  • L. N. Sviridova
    • 3
  • S. N. Sul’yanov
    • 4
  1. 1.Institite of Problems of Chemical PhysicsRussian Academy of SciencesMoscow RegionRussian Federation
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  3. 3.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  4. 4.A. V. Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations