Skip to main content
Log in

The role of the medium in electrochemical functionalization and dispersion of carbon nanotubes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

An electrochemical method for dispersion of single-walled carbon nanotubes (SWNTs) is described. The technique is based on grafting of oxygen-containing functional groups to the nanotube surface during electrolysis in aqueous and nonaqueous potassium bromide solutions. A dependence of the degree of functionalization of nanotubes on the solvent was revealed experimentally. Nanotubes treated in DMSO have about 14 carbon atoms per oxygen atom from functional groups (cf. nearly four C atoms per oxygen atom in the nanotubes treated in aqueous solutions). The corresponding maximum specific capacities of the electrodes are nearly 10 and 60 F g−1. The samples treated in solutions of KBr in DMSO have about 300 carbon atoms per bromine atom on the nanotube surface (cf. only 30 carbon atoms in the samples treated in aqueous solution). A mechanism of electrochemical modification of SWNTs is proposed. Its key step is production of atomic oxygen that oxidizes the nanotube surface with the formation of functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Banerjee, T. Hemraj-Benny, Adv. Mater., 2005, 17, 17.

    Article  CAS  Google Scholar 

  2. E. R. Badamshina, M. P. Gafurova, Ya. I. Estrin, Usp. Khim., 2010, 79, 1027 [Russ. Chem. Rev. (Engl.Trans.), 2010, 79, 945].

    Google Scholar 

  3. M. Moniruzzaman, K. I. Winey, Macromolecules, 2006, 39, 5194.

    Article  CAS  Google Scholar 

  4. P. M. Ajayan, J. M. Tour, Nature (London), 2007, 447, 1066.

    Article  CAS  Google Scholar 

  5. V. G. Udovitsky, Fiz. Inzh. Poverkhn., 2009, 7, 351 [Physical Surface Engineering (Engl. Transl.), 2009, 7, No. 4].

    Google Scholar 

  6. L. Vaisman, H. D. Wagner, G. Marom, Adv. Colloid Interface Sci., 2006, 128–130, 37.

    Article  Google Scholar 

  7. O. Tanaike, O. Kimizuka, N. Yoshizawa, K. Yamada, X. Wang, H. Hatori, M. Toyoda, Electrochem. Commun., 2009, 4, 1441.

    Article  Google Scholar 

  8. P. M. Rafailov, C. Thomsen, U. Dettlaff-Weglikowska, S. Roth, J. Phys. Chem. B, 2008, 11, 25368.

    Google Scholar 

  9. C. Nieto-Draghi, J. B. Avalosa, J. Chem. Phys., 2003, 119, 4782.

    Article  CAS  Google Scholar 

  10. V. V. Chaban, O. N. Kalugin, J. Mol. Liq., 2010, 151, 113.

    Article  CAS  Google Scholar 

  11. S. Banerjee, S. S. Wong, J. Am. Chem. Soc., 2002, 124, 8940.

    Article  CAS  Google Scholar 

  12. M. Pavese, S. Musso, S. Bianco, M. Giorcelli, N. Pugno, J. Phys. Condens. Matter, 2008, 20, 474206.

    Article  Google Scholar 

  13. A. V. Krestinin, A. P. Haritonov, Yu. M. Shulga, O. M. Zhigalina, E. I. Knerelman, M. Dubois, M. M. Brzhezinskaya, A. S. Vinogradov, A. B. Preobrazhencky, G. I. Zvereva, M. B. Kislov, V. M. Martynenko, I. I. Korobov, G. I. Davydova, V. G. Zhigalina, N. A. Kiselev, Ros. nano-tekhnologii, 2009, 4, 67 [Nanotechnologies in Russia (Engl. Transl.), 2009, 4, 60].

    Google Scholar 

  14. A. G. Krivenko, V. I. Matyushenko, E. V. Stenina, L. N. Sviridova, A. V. Krestinin, G. I. Zvereva, V. A. Kurmaz, A. G. Ryabenko, S. N. Dmitriev, V. A. Skuratov, Electrochem. Commun., 2005, 7, 199.

    Article  CAS  Google Scholar 

  15. K. Mizur, S. Imafuji, T. Ochi, J. Phys. Chem. B, 2000, 104, 11001.

    Article  Google Scholar 

  16. M. C. R. Symons, G. Eaton, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 1963.

    Article  CAS  Google Scholar 

  17. Yu. A. Kukk, Zh. Klavil’ye, Elektrokhimiya, 1977, 13, 841 [Sov. Electrochemistry (Engl.Trans.), 1977, 13, 712].

    CAS  Google Scholar 

  18. A. P. Dementjeva, K. I. Maslakova, A. V. Naumkin, Appl. Surf. Sci., 2005, 245, 128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Krivenko.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1046–1052, June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivenko, A.G., Komarova, N.S., Ryabenko, A.G. et al. The role of the medium in electrochemical functionalization and dispersion of carbon nanotubes. Russ Chem Bull 60, 1071–1077 (2011). https://doi.org/10.1007/s11172-011-0169-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-011-0169-9

Key words

Navigation