Advertisement

Russian Chemical Bulletin

, Volume 60, Issue 5, pp 783–789 | Cite as

Modeling of NMR spectra and signal assignment using real-time DFT/GIAO calculations

  • P. A. Belaykov
  • V. P. Ananikov
Full Articles

Abstract

An automated algorithm for fast quantum chemical modeling of NMR spectra within the framework of the density functional theory was developed. High accuracy of calculations of NMR parameters achieved for various classes of organic compounds including heterocyclic compounds, carbohydrates, steroids, and peptides is comparable with the accuracy of experimental determination. The efficiency of computing the NMR chemical shifts using the high-performance PBE/PRIRODA method was demonstrated.

Key words

NMR spectroscopy density functional theory GIAO B3LYP and PBE functionals signal assignment chemical shift calculations heterocyclic compounds carbohydrates steroids Cyclosporin A 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Multidimensional NMR Methods for the Solution State, Eds G. Morris, P. J. Emsley, John Wiley and Sons Ltd, Chichester, 2010.Google Scholar
  2. 2.
    T. Claridge, High-Resolution NMR Techniques in Organic Chemistry, 2nd ed., Tetrahedron Organic Chemistry, 27, Elsevier Science, Amsterdam, 2008.Google Scholar
  3. 3.
    Encyclopedia of Nuclear Magnetic Resonance, Eds D. M. Grant, R. K. Harris, John Wiley and Sons, Chichester, 1996, 1–8; 2002, 9.Google Scholar
  4. 4.
    K. Chary, G. Govil, NMR in Biological Systems: From Molecules to Human, Springer, Dordrecht, 2008.Google Scholar
  5. 5.
    G. S. Rule, T. K. Hitchens, Fundamentals of Protein NMR Spectroscopy, Springer, Dordrecht, 2006.Google Scholar
  6. 6.
    M. Pellecchia, D. S. Sem, K. Wüthrich, Nat. Rev. Drug Discov., 2002, 1, 211.CrossRefGoogle Scholar
  7. 7.
    D. D. Boehr, H. J. Dyson, P. E. Wright, Chem. Rev., 2006, 106, 3055.CrossRefGoogle Scholar
  8. 8.
    V. P. Ananikov, Chem. Rev., 2011, 111, 418.CrossRefGoogle Scholar
  9. 9.
    V. P. Ananikov, I. P. Beletskaya, Izv. Akad. Nauk, Ser. Khim., 2008, 740 [Russ. Chem. Bull., Int. Ed., 2008, 57, 754].Google Scholar
  10. 10.
    T. Kitayama, K. Hatada, NMR Spectroscopy of Polymers, Springer, Berlin, 2010.Google Scholar
  11. 11.
    R. Kimmich, N. Fatkullin, Adv. Polym. Sci., 2004, 170, 1.Google Scholar
  12. 12.
    H. W. Spiess, Macrom. Chem. Phys., 2003, 204, 340.CrossRefGoogle Scholar
  13. 13.
    NMR Crystallography, Eds R. K. Harris, R. E. Wasylishen, M. J. Duer, John Wiley and Sons Ltd, Chichester, 2009.Google Scholar
  14. 14.
    New Techniques in Solid-State NMR, Ed. J. Klinowski, Topics in Current Chemistry, Springer, Berlin, 2005, 246.Google Scholar
  15. 15.
    V. P. Ananikov, I. P. Beletskaya, Ros. Nanotekhnol., 2009, 4, 56 [Nanotechn. Russ. (Engl. Transl.), 2010, 5, 1].Google Scholar
  16. 16.
    C. Mayer, Ann. Rep. NMR Spectr., 2005, 55, 205.CrossRefGoogle Scholar
  17. 17.
    S. V. Kharlamov, Sh. K. Latypov, Usp. Khim., 2010, 79, 699 [Russ. Chem. Rev. (Engl. Transl.), 2010, 79, 635].CrossRefGoogle Scholar
  18. 18.
    A. Pastor, E. Martínez-Viviente, Coord. Chem. Rev., 2008, 252, 2314.CrossRefGoogle Scholar
  19. 19.
    M. Pons, O. Millet, Prog. Nucl. Magn. Res. Spectrosc., 2001, 38, 267.CrossRefGoogle Scholar
  20. 20.
    In situ NMR Methods in Catalysis, Eds J. Bargon, L. T. Kuhn, Topics in Current Chemistry, Springer, Berlin, 2007, 276.Google Scholar
  21. 21.
    T. Blasco, Chem. Soc. Rev., 2010, 39, 4685.CrossRefGoogle Scholar
  22. 22.
    D. A. W. Wendisch, Appl. Spectrosc. Rev., 1993, 28, 165.CrossRefGoogle Scholar
  23. 23.
    S. Ghosh, Nuclear Magnetic Resonance for Process Industries, CRC Press, Boca Raton, FL, 2010.Google Scholar
  24. 24.
    Calculation of NMR and EPR Parameters. Theory and Applications, Eds M. Kaupp, M. Bühl, V. C. Malkin, Wiley-VCH Verlag GmbH and Co., Weinheim, Germany, 2004.Google Scholar
  25. 25.
    G. Bifulco, P. Dambruoso, L. Gomez-Paloma, R. Riccio, Chem. Rev., 2007, 107, 3744.CrossRefGoogle Scholar
  26. 26.
    J. Vaara, Phys. Chem. Chem. Phys., 2007, 9, 5399.CrossRefGoogle Scholar
  27. 27.
    J. C. Facelli, Modeling NMR Chemical Shifts, in Modern Magnetic Resonance, Ed. G. A. Webb, Springer, Dordrecht, 2006, 53.CrossRefGoogle Scholar
  28. 28.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr., J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salva- dor, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Mar- tin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. John- son, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, GAUSSIAN 03, Gaussian, Inc., Pittsburgh (PA), 2003.Google Scholar
  29. 29.
    A. D. Becke, Phys. Rev. A, 1988, 38, 3098.CrossRefGoogle Scholar
  30. 30.
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  31. 31.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  32. 32.
    R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys., 1971, 54, 724.CrossRefGoogle Scholar
  33. 33.
    W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys., 1972, 56, 2257.CrossRefGoogle Scholar
  34. 34.
    K. Wolinski, J. F. Hilton, P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251.CrossRefGoogle Scholar
  35. 35.
    J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys., 1996, 104, 5497.CrossRefGoogle Scholar
  36. 36.
    G. Rauhut, S. Puyear, K. Wolinski, P. Pulay, J. Phys. Chem., 1996, 100, 6310.CrossRefGoogle Scholar
  37. 37.
    R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 1980, 72, 650.CrossRefGoogle Scholar
  38. 38.
    A. D. McLean, G. S. Chandler, J. Chem. Phys., 1980, 72, 5639.CrossRefGoogle Scholar
  39. 39.
    D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.CrossRefGoogle Scholar
  40. 40.
    D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116.CrossRefGoogle Scholar
  41. 41.
    G. Schaftenaar, J. H. Noordik, J. Comput.-Aided Mol. Des., 2000, 14, 123.CrossRefGoogle Scholar
  42. 42.
    V. P. Ananikov, Centr. Eur. J. Chem. (CEJC), 2004, 2, 196.CrossRefGoogle Scholar
  43. 43.
    V. P. Ananikov, I. P. Beletskaya, Izv. Akad. Nauk, Ser. Khim., 2003, 771 [Russ. Chem. Bul., Int. Ed., 2003, 52, 811].Google Scholar
  44. 44.
    V. P. Ananikov, Bruker Spin Report, 2005, N156/157, 41.Google Scholar
  45. 45.
    Marvin 5.4.1.1, ChemAxon, Calculator Plugins, 2010, http://www.chemaxon.com/.
  46. 46.
    W. Koch, M. C. Holthausen, A Chemists’s Guide to Density Fuctional Theory, Wiley-VCH, Weinheim, 2001.CrossRefGoogle Scholar
  47. 47.
    D. S. Sholl, J. A. Steckel, Density Functional Theory: A Practical Introduction, John Wiley and Sons, Hoboken, New Jersey, 2009.Google Scholar
  48. 48.
    A. M. Genaev, xyz2jmod, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, http://limor1.nioch.nsc.ru/quant/program/xyz2jmod.
  49. 49.
    H.-O. Kalinowski, S. Berger, S. Braun, Carbon-13 NMR Spectroscopy, John Wiley and Sons, Chichester, 1988.Google Scholar
  50. 50.
    Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis, Eds K. Pihlaja, E. Kleinpeter, VCH Publishers, Deerfield Beach, FL, 1994.Google Scholar
  51. 51.
    R. Y. Calne, D. J. G. White, S. Thiru, D. B. Evans, P. McMaster, D. C. Dunn, G. N. Craddock, D. B. Pentlow, K. Rolles, Lancet, 1978, 2, 1323.CrossRefGoogle Scholar
  52. 52.
    S. Britton, R. Palacios, Immun. Rev., 1982, 65, 5.CrossRefGoogle Scholar
  53. 53.
    J. Lee, S. S. Kim, J. Int. Med. Res., 2010, 38, 1561.Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations